Look at the 8x8 grid below at left. In the rows and columns there are repeated numbers. Erasing 19 of them, we achieve the grid at right, that has no repeated numbers in any row, in any column.
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 5 | 7 | 1 | 2 | 5 | 4 | 4 | 3 | | | 7 | 1 | | 5 | | 4 | 3 |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 4 | 3 | 1 | 2 | 7 | 5 | 6 | 3 | | 4 | 3 | | 2 | 7 | 5 | 6 | |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 5 | 5 | 3 | 4 | 2 | 1 | 7 | 8 | | | 5 | 3 | | 2 | | 7 | 8 |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 6 | 6 | 2 | 7 | 3 | 3 | 3 | 1 | | 6 | | 2 | 7 | | 3 | | 1 |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 3 | 2 | 5 | 6 | 9 | 1 | 8 | 6 | | 3 | 2 | 5 | | 9 | 1 | 8 | 6 |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 2 | 1 | 3 | 4 | 6 | 2 | 5 | 2 | | | 1 | | 4 | 6 | | 5 | 2 |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 9 | 8 | 4 | 1 | 4 | 6 | 2 | 3 | | 9 | 8 | 4 | 1 | | 6 | 2 | |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 7 | 5 | 6 | 5 | 8 | 5 | 1 | 4 | | 7 | | 6 | 5 | 8 | | 1 | 4 |
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
Do the same with this 8x8 grid, erasing the minimum number of squares.
+---+---+---+---+---+---+---+---+
| 8 | 4 | 6 | 5 | 3 | 5 | 7 | 4 |
+---+---+---+---+---+---+---+---+
| 6 | 5 | 5 | 4 | 7 | 8 | 3 | 1 |
+---+---+---+---+---+---+---+---+
| 5 | 7 | 2 | 5 | 5 | 4 | 8 | 7 |
+---+---+---+---+---+---+---+---+
| 8 | 6 | 5 | 3 | 2 | 5 | 4 | 4 |
+---+---+---+---+---+---+---+---+
| 3 | 8 | 1 | 4 | 8 | 6 | 5 | 2 |
+---+---+---+---+---+---+---+---+
| 5 | 3 | 7 | 6 | 4 | 2 | 2 | 2 |
+---+---+---+---+---+---+---+---+
| 5 | 8 | 7 | 7 | 6 | 2 | 1 | 3 |
+---+---+---+---+---+---+---+---+
| 1 | 1 | 3 | 7 | 6 | 4 | 6 | 8 |
+---+---+---+---+---+---+---+---+
(In reply to
A look at minimality by Gamer)
But isn't there a symmetrical situation between the two 4's in row one and the two 4's in row four? Would not then the rightmost 4 in each of these rows dominate the leftmost? But one of the two rightmost 4's must be removed, at which point the other one in the same column no longer dominates the leftmost in its row, as its columnmate has disappeared.
|
Posted by Charlie
on 2008-08-22 10:51:57 |