Determine all possible pair(s) (P, Q) of 5-digit perfect squares, such that P and Q together contain each of the digits 0 to 9 exactly once. Neither P nor Q can contain any leading zeroes.
- (15876, 23409)
- (15876, 39204)
- (20736, 51984)
- (20736, 95481)
- (23409, 15876)
- (30276, 51984)
- (30276, 95481)
- (38025, 47961)
- (39204, 15876)
- (47961, 38025)
- (51984, 20736)
- (51984, 30276)
- (63504, 71289)
- (71289, 63504)
- (95481, 20736)
- (95481, 30276)
If a leading zero were permitted the following pairs would also be solutions:
- (03249, 15876)
- (04356, 71289)
- (08649, 35721)
- (15876, 03249)
- (35721, 08649)
- (71289, 04356)
|
Posted by Dej Mar
on 2008-10-11 12:21:51 |