All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Numeric Anagrams (Posted on 2009-03-17) Difficulty: 3 of 5
In general,
find an integer I which can be classified as Prime, Triangle, Square or Cube, comprised of unique digits and when the digits are rearranged, one of those categories applies.
[eg: 19 (P) → 91 (T)]


Then specifically apply that rule to fill the table with the lowest values possible per category (integer I) with its anagram being larger, in the lower cell per category.


Note: It may not be possible to offer solutions for all asymetric categories.
You might care also to offer some suggestions whereby some integers, without rearranging, may fall into another category - 36 (S), 36 (T); 729 (S), 729 (C).

Note that colours by row and column are category-defined.

See The Solution Submitted by brianjn    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2

DECLARE SUB permute (a$)
DECLARE FUNCTION anagram# (a$, b$)
DEFDBL A-Z
DIM num$(1000, 4)

PRINT

' Build table of primes, triangles, squares and cubes

num$(1, 1) = "2"
s = 2: i = 3
DO
  good = 1
  FOR j = 1 TO s - 1
   IF i MOD VAL(num$(j, 1)) = 0 THEN good = 0: EXIT FOR
  NEXT
  IF good THEN
    num$(s, 1) = LTRIM$(STR$(i))
    s = s + 1
  END IF
  i = i + 1
LOOP UNTIL s > 1000

num$(1, 2) = "1"
s = 2: i = 2
DO
  num$(s, 2) = LTRIM$(STR$(VAL(num$(s - 1, 2)) + i))
  s = s + 1
  i = i + 1
LOOP UNTIL s > 1000 OR LEN(num$(s - 1, 2)) > 4

num$(1, 3) = "1"
s = 2: i = 2
DO
  num$(s, 3) = LTRIM$(STR$(i * i))
  s = s + 1
  i = i + 1
LOOP UNTIL s > 1000 OR LEN(num$(s - 1, 3)) > 4

num$(1, 4) = "1"
s = 2: i = 2
DO
  num$(s, 4) = LTRIM$(STR$(i * i * i))
  s = s + 1
  i = i + 1
LOOP UNTIL s > 1000 OR LEN(num$(s - 1, 4)) > 4

' Match column against column to find results

FOR c1 = 1 TO 4
FOR c2 = 1 TO 4
 FOR i = 1 TO 1000
   found = 0
   FOR j = 1 TO 1000
     IF LEN(num$(j, c2)) > LEN(num$(i, c1)) THEN EXIT FOR
     IF anagram(num$(j, c2), num$(i, c1)) THEN
       found = 1
       PRINT c1; c2, num$(i, c1); "  "; num$(j, c2)
       grid$(c1 * 2, c2) = num$(j, c2)
       grid$(c1 * 2 - 1, c2) = num$(i, c1)
       EXIT FOR
     END IF
   NEXT
   IF found THEN EXIT FOR
 NEXT
NEXT
NEXT

' Present grid of solutions

FOR c1 = 1 TO 4
FOR c2 = 1 TO 4
 PRINT RIGHT$("      " + grid$(c1 * 2 - 1, c2), 5);
NEXT
PRINT
FOR c2 = 1 TO 4
 PRINT RIGHT$("      " + grid$(c1 * 2, c2), 5);
NEXT
PRINT
PRINT
NEXT

' Expand to larger numbers to fill in triangle/cube gap

' triangle to cube
tr = 0
FOR i = 1 TO 3000
 tr = tr + i
 t$ = LTRIM$(STR$(tr))
 IF LEN(t$) > 1 THEN
   h$ = t$
   DO
    IF LEFT$(t$, 1) <> "0" THEN
      v = VAL(t$)
      cr = INT(v ^ (1 / 3) + .5)
      IF cr * cr * cr = v THEN
         PRINT tr; v, i; cr
         EXIT FOR
      END IF
    END IF
    permute t$
   LOOP UNTIL h$ = t$
 END IF
NEXT

' cube to triangle
FOR i = 1 TO 3000
 cu = i * i * i
 c$ = LTRIM$(STR$(cu))
 IF LEN(c$) > 1 THEN
   h$ = c$
   DO
    IF LEFT$(c$, 1) <> "0" THEN
      v = VAL(c$)
      tn = INT((SQR(1 + 8 * v) - 1) / 2 + .5)
      IF tn * (tn + 1) = 2 * v THEN
         PRINT cu; v, i; tn
         EXIT FOR
      END IF
    END IF
    permute c$
   LOOP UNTIL h$ = c$
 END IF
NEXT

END

FUNCTION anagram (a$, b$)
  IF LEN(a$) <> LEN(b$) THEN anagram = 0: EXIT FUNCTION
  IF a$ = b$ THEN anagram = 0: EXIT FUNCTION
  x$ = a$
  FOR i = 1 TO LEN(b$)
    ix = INSTR(x$, MID$(b$, i, 1))
    IF ix THEN
     x$ = LEFT$(x$, ix - 1) + MID$(x$, ix + 1)
    ELSE
     anagram = 0: EXIT FUNCTION
    END IF
  NEXT
  anagram = 1
END FUNCTION

The found anagrams (limited to 4-digit numbers or smaller):


From:    \   to anagram:
             prime tri  sq  cube
prime          13   19   61  251
  anagram:     31   91   16  125
triangle       91  120  136
  anagram:     19  210  361
square         16  361  144 1296
  anagram:     61  136  441 9261
cube          125      2197  125
  anagram:    251      7921  512
             


The triangle/cube spots are empty as they are 5-digit numbers:             

226th triangular number = 25651;  15625 = 25^3
22^3 = 10648; 283rd triangular number = 40186

So to complete the table:

             prime     tri     sq     cube
prime          13       19      61     251
  anagram:     31       91      16     125
triangle       91      120     136   25651
  anagram:     19      210     361   15625
square         16      361     144    1296
  anagram:     61      136     441    9261
cube          125    10648    2197     125
  anagram:    251    40186    7921     512
             


When the anagrammed number must be larger than the original number, we get

             prime     tri     sq     cube
prime          13       19     163     251
  anagram:     31       91     361     512
triangle      136      120     136   57970
  anagram:    163      210     361   79507
square         16     1089     144    1296
  anagram:     61     9180     441    9261
cube          125    10648    2197     125
  anagram:    251    40186    7921     512
             


Note that the 25,651 to 15,625 triangle-to-cube anagram has disappeared completely. The other replacemed items are still present in the reverse direction.
             
The changed values come from programs like the following:

Prime to square:
             
    5   N=10
   10   while Found=0
   20    N=nxtprm(N)
   30    Ns=cutspc(str(N))
   40    H=Ns:gosub *Permute(&Ns)
   50    while H<>Ns
   60      Sq=val(Ns)
   70      Sr=sqrt(Sq)
   80      if Sr*Sr=Sq then
   90       :if Sq>N then
  100         :print N,Sq
  105         :Found=1
  110      gosub *Permute(&Ns)
  120    wend
  130   wend
  440   end
 
Square to triangular:
 
    5   N=0
   10   while Found=0
   20    I=I+1:N=I*I
   30    Ns=cutspc(str(N))
   40    H=Ns:gosub *Permute(&Ns)
   50    while H<>Ns
   60      Sq=val(Ns)
   70      Sr=int(sqrt(1+8*Sq)+0.5)
   80      if Sr*Sr=1+8*Sq then
   90       :if Sq>N then
  100         :print N,Sq
  105         :Found=1
  110      gosub *Permute(&Ns)
  120    wend
  130   wend
  440   end
 


Extra part:

The only prime that's a triangular number is 3.

No prime can be square or cube.

The squares that are cubes are all the 6th powers.

The following program:

DEFDBL A-Z
adr = 1
PRINT
DO
 t = t + adr: adr = adr + 1
 sr = INT(SQR(t) + .5)
 IF sr * sr = t THEN PRINT t: ct = ct + 1
 cr = INT(t ^ (1 / 3) + .5)
 IF cr * cr * cr = t THEN PRINT SPACE$(20); t
LOOP UNTIL ct > 45

finds only 1 as being both triangular and cube.  The following list shows those that are triangular and square:

 1
 36
 1225
 41616
 1413721
 48024900
 1631432881
 55420693056
 1882672131025
 
 the last triangular number checked when the program was interrupted being 22482404920990.


  Posted by Charlie on 2009-03-17 17:29:27
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information