Consider two 5-digit perfect squares, the first two digits of each of which form a 2-digit prime number, and the last three digits form a 3-digit prime number.
For sake of discussion, let the digits be called ABCDE and VWXYZ. The two squares I'm thinking of can form, from those digits, another 5-digit square: ABXYZ. It is of the same type as the other two as AB is prime as is XYZ.
The use of different letters does not imply that all the letters represent different digits; any two may be the same or different, but the combined square does share its first two digits with those of one of the two original squares and its last three with the last three of the other.
What are the three squares?
I used mathematica to find the following solutions for the 3 squares
11449 , 11449 , 11449
11449 , 11881 , 11881
11449 , 19881 , 11881
11449 , 23409 , 11409
11449 , 29241 , 11241
11449 , 29929 , 11929
11449 , 83521 , 11521
11449 , 89401 , 11401
11881 , 11449 , 11449
11881 , 11881 , 11881
11881 , 19881 , 11881
11881 , 23409 , 11409
11881 , 29241 , 11241
11881 , 29929 , 11929
11881 , 83521 , 11521
11881 , 89401 , 11401
19881 , 11449 , 19449
19881 , 11881 , 19881
19881 , 19881 , 19881
19881 , 23409 , 19409
19881 , 29241 , 19241
19881 , 29929 , 19929
19881 , 83521 , 19521
19881 , 89401 , 19401
23409 , 11449 , 23449
23409 , 11881 , 23881
23409 , 19881 , 23881
23409 , 23409 , 23409
23409 , 29241 , 23241
23409 , 29929 , 23929
23409 , 83521 , 23521
23409 , 89401 , 23401
29241 , 11449 , 29449
29241 , 11881 , 29881
29241 , 19881 , 29881
29241 , 23409 , 29409
29241 , 29241 , 29241
29241 , 29929 , 29929
29241 , 83521 , 29521
29241 , 89401 , 29401
29929 , 11449 , 29449
29929 , 11881 , 29881
29929 , 19881 , 29881
29929 , 23409 , 29409
29929 , 29241 , 29241
29929 , 29929 , 29929
29929 , 83521 , 29521
29929 , 89401 , 29401
83521 , 11449 , 83449
83521 , 11881 , 83881
83521 , 19881 , 83881
83521 , 23409 , 83409
83521 , 29241 , 83241
83521 , 29929 , 83929
83521 , 83521 , 83521
83521 , 89401 , 83401
89401 , 11449 , 89449
89401 , 11881 , 89881
89401 , 19881 , 89881
89401 , 23409 , 89409
89401 , 29241 , 89241
89401 , 29929 , 89929
89401 , 83521 , 89521
89401 , 89401 , 89401
And the code I used to find these follows
For[a=1,a„T9,a++,
For[b=0,b„T9,b++,
n1=10*a+b;
If[PrimeQ[n1],
For[c=1,c„T9,c++,
For[d=0,d„T9,d++,
For[e=0,e„T9,e++,
n2=100*c+10*d+e;
n3=1000*n1+n2;
If[PrimeQ[n2] && IntegerQ[Sqrt[n3]],
For[v=1,v„T9,v++,
For[w=0,w„T9,w++,
n4=10*v+w;
If[PrimeQ[n4],
For[x=1,x„T9,x++,
For[y=0,y„T9,y++,
For[z=0,z„T9,z++,
n5=100*x+10*y+z;
n6=1000*n4+n5;
n7=1000*n1+n5;
If[PrimeQ[n5] && IntegerQ[Sqrt[n6]] && IntegerQ[n7],
Print[n3,",",n6,",",n7];
];
];
];
];
];
];
];
];
];
];
];
];
];
];
|
Posted by Daniel
on 2009-04-09 11:42:29 |