Note, some of the "polygons" below are degenerate, into stars (self-intersecting). See later comment for correction.
The available polygons are:
polygon deflection at vertex types of move
3d 3g 6g 3d 90 135 135 RRB
4b 6c 7e 4b -37-162-162 NNB
4b 7b 7e 4b -90-135-135 RRB
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
6e 7g 5h 4f 6e -90 -90 -90 -90 NNNN
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
8g 8d 5a 2d 2g 5j 8g 45 90 45 45 90 45 RBBRBB
6e 7g 4j 2i 1g 1d 4d 6e -72 -72 -37 -27 -90 -27 -37 NBNNRRN
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
The angle at a given vertex is the supplement of the absolute value of the deflection. The deflection is negative for a counterclockwise trace of the polygon and positive for clockwise. If there were a mixture of negatives and positives, the polygon would not be convex.
The types of move are:
N = knight
B = Queen moving diagonally (as Bishop)
R = Queen moving orthogonally (as Rook)
There are 28 combinations of these, to serve as solutions, as no vertex is present in more than one polygon of a solution:
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
4b 6c 7e 4b -37-162-162 NNB
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
4b 7b 7e 4b -90-135-135 RRB
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
4b 6c 7e 4b -37-162-162 NNB
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
4b 7b 7e 4b -90-135-135 RRB
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 5h 8h 8e 6d 3d 63 27 90 63 27 90 RNRRNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
4b 6c 7e 4b -37-162-162 NNB
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
4b 7b 7e 4b -90-135-135 RRB
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
8a 8d 7f 4f 5d 8a -27 -63-117 -18-135 RNRNB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
3d 3g 6g 3d 90 135 135 RRB
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
8g 8d 5a 2d 2g 5j 8g 45 90 45 45 90 45 RBBRBB
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
3d 3g 6g 3d 90 135 135 RRB This is Jyqm's solution
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
8g 8d 5a 2d 2g 5j 8g 45 90 45 45 90 45 RBBRBB
6e 7g 4j 2i 1g 2e 4d 6e -72 -72 -37 -53 -37 -53 -37 NBNNNNN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 5f 5c 4e 6d 3d 117 63 153 143 153 90 RNRNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 6c 7e 4h 1e 4b -37 -72 -90 -90 -72 NNBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
1f 4i 7f 4c 1f 90 90 90 90 BBBB
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
8a 8d 5a 8a -135-135 -90 RBR
8g 9i 7j 6h 8g -90 -90 -90 -90 NNNN
4b 7b 7e 4h 1e 4b -90 -45 -90 -90 -45 RRBBB
3d 3g 6j 9g 8e 6d 3d 45 90 72 37 27 90 RBBNNR
6e 7g 5h 4f 7i 5j 5g 6e -90 -90-162-108-117 -27-127 NNNBNRN
6f 7d 6b 4a 2b 1d 2f 4g 6f 53 37 53 37 53 37 53 37 NNNNNNNN
DECLARE SUB reportPoly (p$)
DECLARE SUB setUp (size!)
DECLARE FUNCTION norm! (x!)
DECLARE SUB rect2theta ()
DECLARE SUB addon (size!)
DATA CEBFEAEBHA
DATA AEHDFGEGDC
DATA FEBAHHBBCF
DATA DADGEDHDBC
DATA CEDEGCGCDF
DATA CCBFAACDGC
DATA FBCBCCBHEC
DATA ACEBEBADDG
DATA DEGBCHDEBC
DIM SHARED b$(9, 10), h$, num$, let$, lnCt, dir$, dx, dy, theta, pi, firstTheta
DIM SHARED poly$(3 TO 8, 99), solSet(3 TO 8), used(9, 10), solCt
num$ = "123456789": let$ = "abcdefghij"
pi = ATN(1) * 4
CLS
FOR row = 1 TO 9
READ s$
FOR col = 1 TO 10
b$(row, col) = MID$(s$, col, 1)
NEXT
NEXT
OPEN "chespoly.txt" FOR OUTPUT AS #2
FOR size = 3 TO 8
FOR r = 1 TO 9
FOR c = 1 TO 10
IF b$(r, c) = "A" THEN
h$ = MID$(num$, r, 1) + MID$(let$, c, 1)
addon size ' 3 is for triangle
END IF
NEXT
NEXT
NEXT size
PRINT lnCt
PRINT #2,
FOR sz = 3 TO 8
PRINT VAL(poly$(sz, 0));
NEXT
PRINT
setUp 8
PRINT solCt
END
SUB addon (size)
ln = LEN(h$): sz = ln / 2
currR = VAL(MID$(h$, ln - 1, 1))
currC = INSTR(let$, MID$(h$, ln, 1))
IF sz > 1 THEN
prevR = VAL(MID$(h$, ln - 3, 1))
prevC = INSTR(let$, MID$(h$, ln - 2, 1))
dx = currC - prevC: dy = prevR - currR
rect2theta
oldtheta = theta
IF sz = 2 THEN firstTheta = theta
END IF
strtDR = -3: endDR = 3
FOR dr = strtDR TO endDR
dca = 3 - ABS(dr)
stp = 2 * dca
IF dca = 0 THEN dca = 3: stp = 3
strtDC = -dca: endDC = dca
FOR dc = strtDC TO endDC STEP stp
dx = dc: dy = -dr
rect2theta
good = 1
newtheta = theta
IF size = 4 AND sz > 1 AND (ABS(norm(theta - oldtheta)) < 3.14 / 2 OR ABS(norm(theta - oldtheta)) > 3.15 / 2) THEN good = 0
IF sz = 2 THEN
IF norm(newtheta - oldtheta) > 0 THEN
dir$ = "ccw"
ELSEIF norm(newtheta - oldtheta) = 0 THEN
dir$ = "": good = 0
ELSE
dir$ = "cw"
END IF
ELSEIF sz > 2 THEN
IF norm(newtheta - oldtheta) > 0 THEN
newdir$ = "ccw":
ELSEIF norm(newtheta - oldtheta) < 0 THEN
newdir$ = "cw"
ELSE
newdir$ = "": good = 0
END IF
END IF
r = currR + dr: c = currC + dc
IF good = 1 AND (newdir$ = dir$ OR newdir$ = "" OR sz < 3) AND r >= 1 AND r <= 9 AND c >= 1 AND c <= 10 THEN
diff = ASC(b$(r, c)) - ASC(b$(currR, currC))
IF diff = 1 OR sz = size THEN
h$ = h$ + MID$(num$, r, 1) + MID$(let$, c, 1)
IF sz = size THEN
IF norm(firstTheta - newtheta) > 0 AND dir$ = "ccw" OR norm(firstTheta - newtheta) < 0 AND dir$ = "cw" THEN
IF RIGHT$(h$, 2) = LEFT$(h$, 2) THEN
reportPoly h$
lnCt = lnCt + 1
poly$(size, 0) = LTRIM$(STR$(VAL(poly$(size, 0)) + 1))
poly$(size, VAL(poly$(size, 0))) = h$
END IF
END IF
ELSE
addon size
END IF
h$ = LEFT$(h$, LEN(h$) - 2)
END IF
END IF
NEXT
NEXT
END SUB
FUNCTION norm (x)
v = x
DO
IF v > pi THEN v = v - 2 * pi
IF v < -pi THEN v = v + 2 * pi
LOOP UNTIL v >= -pi AND v <= pi
norm = v
END FUNCTION
SUB rect2theta
IF dx = 0 THEN
th = pi / 2 * SGN(dy)
ELSE
th = ATN(dy / dx)
IF dx < 0 THEN th = th + pi
IF th > pi THEN th = th - 2 * pi
END IF
theta = th
END SUB
SUB reportPoly (p$)
FOR i = 1 TO LEN(p$) STEP 2
PRINT #2, MID$(p$, i, 2); " ";
NEXT i
PRINT #2, TAB(31);
q$ = p$ + MID$(p$, 3, 2)
FOR i = 1 TO LEN(p$) - 2 STEP 2
r1 = VAL(MID$(q$, i, 1))
c1 = INSTR(let$, MID$(q$, i + 1, 1))
r2 = VAL(MID$(q$, i + 2, 1))
c2 = INSTR(let$, MID$(q$, i + 3, 1))
r3 = VAL(MID$(q$, i + 4, 1))
c3 = INSTR(let$, MID$(q$, i + 5, 1))
dx = c2 - c1: dy = r2 - r1: rect2theta: th1 = theta
dx = c3 - c2: dy = r3 - r2: rect2theta: th2 = theta
chg = norm(th2 - th1)
PRINT #2, USING "####"; chg * 180 / pi;
NEXT i
PRINT #2, TAB(64);
FOR i = 1 TO LEN(p$) - 2 STEP 2
r1 = VAL(MID$(q$, i, 1))
c1 = INSTR(let$, MID$(q$, i + 1, 1))
r2 = VAL(MID$(q$, i + 2, 1))
c2 = INSTR(let$, MID$(q$, i + 3, 1))
dx = ABS(c2 - c1): dy = ABS(r2 - r1)
IF dx = 3 AND dy = 3 THEN
PRINT #2, "B";
ELSEIF dx = 3 OR dy = 3 THEN
PRINT #2, "R";
ELSEIF dx = 1 AND dy = 2 OR dy = 1 AND dx = 2 THEN
PRINT #2, "N";
ELSE
PRINT #2, "?";
END IF
NEXT i
PRINT #2,
END SUB
SUB setUp (size)
numb = VAL(poly$(size, 0))
FOR i = 1 TO numb
solSet(size) = i
tr$ = poly$(size, i)
good = 1
FOR j = 1 TO LEN(tr$) STEP 2
r = VAL(MID$(tr$, j, 1))
c = INSTR(let$, MID$(tr$, j + 1, 1))
IF used(r, c) THEN good = 0: EXIT FOR
NEXT
IF good THEN
FOR j = 1 TO LEN(tr$) STEP 2
r = VAL(MID$(tr$, j, 1))
c = INSTR(let$, MID$(tr$, j + 1, 1))
used(r, c) = 1
NEXT
IF size = 3 THEN
FOR k = 3 TO 8
reportPoly poly$(k, solSet(k))
NEXT
PRINT #2,
solCt = solCt + 1
ELSE
setUp size - 1
END IF
FOR j = 1 TO LEN(tr$) STEP 2
r = VAL(MID$(tr$, j, 1))
c = INSTR(let$, MID$(tr$, j + 1, 1))
used(r, c) = 0
NEXT
END IF
NEXT
END SUB
Edited on April 25, 2009, 2:31 am
|
Posted by Charlie
on 2009-04-25 00:29:01 |