Solve this alphametic, where each of the capital letters in bold denotes a different
base 11 digit from 0 to A. None of the numbers contains a leading zero and
U is even.
(
TRY)
2 + (
FOUR)
2 = (
FIVE)
2
I found the following 2 solutions
792^2+ 3069^2= 3158^2
958^2+ 1465^2= 172A^2
using the following code
CLS 0
DIM digits(0 TO 10) AS STRING
FOR i = 0 TO 9
digits(i) = STR$(i)
NEXT i
digits(10) = "A"
FOR t = 1 TO 10
FOR r = 0 TO 10
IF r <> t THEN
FOR y = 0 TO 10
IF y <> t AND y <> t THEN
v1 = y + 11 * r + (11 ^ 2) * t
v1 = v1 ^ 2
FOR f = 1 TO 10
IF f <> t AND f <> r AND f <> y THEN
FOR o = 0 TO 10
IF o <> t AND o <> r AND o <> y AND o <> f THEN
FOR u = 2 TO 10 STEP 2
IF u <> t AND u <> r AND u <> y AND u <> f AND u <> o THEN
v2 = r + 11 * u + (11 ^ 2) * o + (11 ^ 3) * f
v2 = v2 ^ 2
FOR i = 0 TO 10
IF i <> t AND i <> r AND i <> y AND i <> f AND i <> o AND i <> u THEN
FOR v = 0 TO 10
IF v <> t AND v <> r AND v <> y AND v <> f AND v <> o AND v <> u AND v <> i THEN
FOR e = 0 TO 10
IF e <> t AND e <> r AND e <> y AND e <> f AND e <> o AND e <> u AND e <> i AND e <> v THEN
v3 = e + 11 * v + (11 ^ 2) * i + (11 ^ 3) * f
v3 = v3 ^ 2
IF v1 + v2 = v3 THEN
dsp$ = digits(t) + digits(r) + digits(y) + "^2+" + digits(f) + digits(o) + digits(u) + digits(r) + "^2="
dsp$ = dsp$ + digits(f) + digits(i) + digits(v) + digits(e) + "^2"
PRINT dsp$
END IF
END IF
NEXT e
END IF
NEXT v
END IF
NEXT i
END IF
NEXT u
END IF
NEXT o
END IF
NEXT f
END IF
NEXT y
END IF
NEXT r
NEXT t
|
Posted by Daniel
on 2009-05-27 11:58:08 |