Solve this alphametic, where each of the capital letters in bold denotes a different
base 11 digit from 0 to A. None of the numbers contains a leading zero and
U is even.
(
TRY)
2 + (
FOUR)
2 = (
FIVE)
2
Only the middle of the following three solutions is valid as that is the only one in which U is even:
8 6 10 1 0 5 6 1 3 4 2
1044 1392 1740
1089936 1937664 3027600
9 5 8 1 4 6 5 1 7 2 10
1152 1886 2210
1327104 3556996 4884100
10 8 7 2 3 9 8 2 6 0 5
1305 3132 3393
1703025 9809424 11512449
So the alphametic is:
958^2 + 1465^2 = 172A^2
where A is the digit representing ten.
In decimal, that's 1152^2 + 1886^2 = 2210^2,
or 1327104 + 3556996 = 4884100.
DEFDBL A-Z
FOR t = 1 TO 10
used(t) = 1
FOR f = 1 TO 10
IF used(f) = 0 THEN
used(f) = 1
FOR r = 0 TO 10
IF used(r) = 0 THEN
used(r) = 1
FOR y = 0 TO 10
IF used(y) = 0 THEN
used(y) = 1
try = 121 * t + 11 * r + y
try2 = try * try
FOR o = 0 TO 10
IF used(o) = 0 THEN
used(o) = 1
FOR u = 0 TO 10
IF used(u) = 0 THEN
used(u) = 1
four = f * 1331 + o * 121 + u * 11 + r
four2 = four * four
FOR i = 0 TO 10
IF used(i) = 0 THEN
used(i) = 1
FOR v = 0 TO 10
IF used(v) = 0 THEN
used(v) = 1
FOR e = 0 TO 10
IF used(e) = 0 THEN
used(e) = 1
five = f * 1331 + i * 121 + v * 11 + e
five2 = five * five
IF five2 = try2 + four2 THEN
PRINT t; r; y, f; o; u; r, f; i; v; e
PRINT try; four; five
PRINT try2; four2; five2
PRINT
END IF
used(e) = 0
END IF
NEXT
used(v) = 0
END IF
NEXT
used(i) = 0
END IF
NEXT
used(u) = 0
END IF
NEXT
used(o) = 0
END IF
NEXT
used(y) = 0
END IF
NEXT
used(r) = 0
END IF
NEXT
used(f) = 0
END IF
NEXT
used(t) = 0
NEXT
|
Posted by Charlie
on 2009-05-27 13:04:44 |