Determine all possible triplet(s) of positive integers (X, Y, Z) such that the decimal representation of XY*(X+1)Z has no leading zeroes and contains each of the digits from 0 to 9 exactly once.
I used the following code
CLS 0
OPEN ".\output.txt" FOR OUTPUT AS #1
DEF fnIsPan (n#)
s$ = STR$(n#)
IF LEN(s$) = 11 THEN
fail = 0
i = 1
WHILE i < LEN(s$) AND fail = 0
j = i + 1
WHILE j <= LEN(s$) AND fail = 0
IF MID$(s$, i, 1) = MID$(s$, j, 1) THEN
fail = 1
END IF
j = j + 1
WEND
i = i + 1
WEND
fnIsPan = 1 - fail
ELSE
fnIsPan = 0
END IF
END DEF
x# = 2
mx# = 9876543210#
WHILE x# * (x# + 1) <= mx#
y# = 1
WHILE (x# ^ y#) * (x# + 1) <= mx#
z# = 1
WHILE (x# ^ y#) * (x# + 1) ^ z# <= mx#
num# = (x# ^ y#) * (x# + 1) ^ z#
IF fnIsPan(num#) = 1 THEN
PRINT #1, "(" + STR$(x#) + "," + STR$(y#) + "," + STR$(z#) + ") : " + STR$(num#)
END IF
z# = z# + 1
WEND
y# = y# + 1
WEND
x# = x# + 1
WEND
CLOSE #1
and got the following solutions
( 23, 3, 4) : 4036718592
( 264, 3, 1) : 4875932160
( 1253, 1, 2) : 1970362548
( 1818, 1, 2) : 6015327498
( 2016, 2, 1) : 8197604352
( 38627, 1, 1) : 1492083756
( 40508, 1, 1) : 1640938572
( 43065, 1, 1) : 1854637290
( 44027, 1, 1) : 1938420756
( 44576, 1, 1) : 1987064352
( 46565, 1, 1) : 2168345790
( 48735, 1, 1) : 2375148960
( 51714, 1, 1) : 2674389510
( 54269, 1, 1) : 2945178630
( 54459, 1, 1) : 2965837140
( 55151, 1, 1) : 3041687952
( 55152, 1, 1) : 3041798256
( 55331, 1, 1) : 3061574892
( 55403, 1, 1) : 3069547812
( 58454, 1, 1) : 3416928570
( 59579, 1, 1) : 3549716820
( 61497, 1, 1) : 3781942506
( 63072, 1, 1) : 3978140256
( 65465, 1, 1) : 4285731690
( 67580, 1, 1) : 4567123980
( 67662, 1, 1) : 4578213906
( 70154, 1, 1) : 4921653870
( 73737, 1, 1) : 5437218906
( 74906, 1, 1) : 5610983742
( 75662, 1, 1) : 5724813906
( 76203, 1, 1) : 5806973412
( 76337, 1, 1) : 5827413906
( 76760, 1, 1) : 5892174360
( 78011, 1, 1) : 6085794132
( 80631, 1, 1) : 6501438792
( 82809, 1, 1) : 6857413290
( 83015, 1, 1) : 6891573240
( 84555, 1, 1) : 7149632580
( 86076, 1, 1) : 7409163852
( 86553, 1, 1) : 7491508362
( 86688, 1, 1) : 7514896032
( 86769, 1, 1) : 7528946130
( 87669, 1, 1) : 7685941230
( 89064, 1, 1) : 7932485160
( 90198, 1, 1) : 8135769402
( 90423, 1, 1) : 8176409352
( 90909, 1, 1) : 8264537190
( 91943, 1, 1) : 8453607192
( 92169, 1, 1) : 8495216730
( 92268, 1, 1) : 8513476092
( 93356, 1, 1) : 8715436092
( 94464, 1, 1) : 8923541760
( 94617, 1, 1) : 8952471306
( 96362, 1, 1) : 9285731406
( 96570, 1, 1) : 9325861470
( 98702, 1, 1) : 9742183506
( 99270, 1, 1) : 9854632170
|
Posted by Daniel
on 2009-06-06 13:32:41 |