All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Near Goldbach Alphametics (Posted on 2009-06-10) Difficulty: 3 of 5
In the following alphametic equation each capital letter in bold represents a different base x digit from 0 to x-1. None of the numbers can contain any leading zero.

                        PRIME + PRIME + PRIME = NUMBER

Determine the minimum positive integer value of x such that PRIME is a prime number.

Bonus Question:

What would have been the minimum positive integer value of x, if each capital letter in bold represented a different base x prime digit from 2 to x-1?

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
part 1 solution | Comment 1 of 2

In base 14:     

                                                    decimal              
p   r  i   m  e       n  u  m  b  e   r prime number
5  13  4  12  9         1  3  12  0  9  13      228713  686139
10  9  13  1  3         2  4  1  11  3  9       411421  1234263
11  13  4  12  9        2  7  12  0  9  13      459209  1377627
 

  Posted by Charlie on 2009-06-10 18:55:21
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information