All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Some Products Differ by 94 (Posted on 2009-09-03) Difficulty: 2 of 5
Determine the total number of quadruplets (p, q, r, s) of positive integers with p < q < r < s < 100, such that: p+s = q+r and, q*r - p*s = 94.

See The Solution Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
computer solution | Comment 1 of 2

using the following Qbasic code
„ CLS 0
„ OPEN ".\output.txt" FOR OUTPUT AS #1
„ cnt = 0
„ FOR p = 1 TO 96
„  FOR q = p + 1 TO 97
„   FOR r = q + 1 TO 98
„    FOR s = r + 1 TO 99
„     IF p + s = q + r AND q * r - p * s = 94 THEN
„      cnt = cnt + 1
„      PRINT #1, cnt, p; q; r; s
„     END IF
„    NEXT s
„   NEXT r
„  NEXT q
„ NEXT p
„ CLOSE #1

I found the following 54 solutions
 1             1  2  95  96
 2             1  3  48  50
 3             2  3  96  97
 4             2  4  49  51
 5             3  4  97  98
 6             3  5  50  52
 7             4  5  98  99
 8             4  6  51  53
 9             5  7  52  54
 10            6  8  53  55
 11            7  9  54  56
 12            8  10  55  57
 13            9  11  56  58
 14            10  12  57  59
 15            11  13  58  60
 16            12  14  59  61
 17            13  15  60  62
 18            14  16  61  63
 19            15  17  62  64
 20            16  18  63  65
 21            17  19  64  66
 22            18  20  65  67
 23            19  21  66  68
 24            20  22  67  69
 25            21  23  68  70
 26            22  24  69  71
 27            23  25  70  72
 28            24  26  71  73
 29            25  27  72  74
 30            26  28  73  75
 31            27  29  74  76
 32            28  30  75  77
 33            29  31  76  78
 34            30  32  77  79
 35            31  33  78  80
 36            32  34  79  81
 37            33  35  80  82
 38            34  36  81  83
 39            35  37  82  84
 40            36  38  83  85
 41            37  39  84  86
 42            38  40  85  87
 43            39  41  86  88
 44            40  42  87  89
 45            41  43  88  90
 46            42  44  89  91
 47            43  45  90  92
 48            44  46  91  93
 49            45  47  92  94
 50            46  48  93  95
 51            47  49  94  96
 52            48  50  95  97
 53            49  51  96  98
 54            50  52  97  99


  Posted by Daniel on 2009-09-03 13:32:27
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information