Consider the series of semiprimes. Now consider the series of numbers representing the Sum Of Digits (SOD) of each semiprime.
(1.) How many times does the number '9' occur, and why?
(2.) What is the smallest semiprime that has the same SOD as the next consecutive semiprime? or prove that there is no pair of consecutive semiprimes that have the same SOD.
(In reply to
part 2 (computer solution) by Daniel)
list
10 for I=1 to 7000
20 if fnSemiPrime(I) then
25 :if fnSod(I)=Prv then print PrvNo,
30 :print I,fnSod(I):endif:PrvNo=I:Prv=fnSod(I)
50 next
200 end
300
400 fnSemiPrime(X)
410 if prmdiv(X)=X then return(0)
420 N=X//prmdiv(X)
430 if prmdiv(N)=N then return(-1)
440 return(0)
500 fnSod(X)
505 local T,I
510 Xstr=cutspc(str(X))
520 T=0
530 for I=1 to len(Xstr):T=T+val(mid(Xstr,I,1)):next
540 return(T)
OK
semiprimes SOD
146 155 11
226 235 10
278 287 17
346 355 13
1018 1027 10
1177 1186 16
1273 1282 13
1546 1555 16
1865 1874 20
1945 1954 19
2138 2147 14
2545 2554 16
2762 2771 17
2869 2878 25
3118 3127 13
3317 3326 14
3817 3826 19
4022 4031 8
4045 4054 13
4069 4078 19
4126 4135 13
4213 4222 10
4249 4258 19
4322 4331 11
4417 4426 16
4502 4511 11
4918 4927 22
5114 5123 11
5389 5398 25
5438 5447 20
5473 5482 19
5515 5533 16
5645 5663 20
5677 5686 25
5855 5873 23
6169 6178 22
6209 6218 17
6218 6227 17
6362 6371 17
6649 6658 25
6826 6835 22
|
Posted by Charlie
on 2009-09-08 23:58:21 |