Home > Numbers
ABCD's Of Greatest Divisor (Posted on 2009-09-24) |
|
The greatest common divisor of five positive integers ABCD, 1920CD41, 496BC3, 872AB76 and 10A25D8 is ≥ 2, where each of A, B, C and D represents a different base 10 digit from 0 to 9.
Determine all possible quadruplet(s) (A, B, C, D) that satisfy the given conditions.
computer solution
|
| Comment 1 of 3
|
using mathematica:
For[a=1,a „T9,a++, For[b=0,b„T9,b++, If[b!=a, For[c=0,c„T9,c++, If[c!=a && c!=b, For[d=0,d„T9,d++, If[d!a && d!b && d!c, v1=FromDigits[{a,b,c,d}]; v2=FromDigits[{1,9,2,0,c,d,4,1}]; v3=FromDigits[{4,9,6,b,c,3}]; v4=FromDigits[{8,7,2,a,b,7,6}]; If[GCD[v1,v2,v3,v4]>=2, Print[v1," ",v2," ",v3," ",v4," ",GCD[v1,v2,v3,v4]]; ];];];];];];];];
gives the solution of a=8 b=5 c=2 d=4 with GCD of 2131
|
Posted by Daniel
on 2009-09-24 11:33:15 |
|
|
Please log in:
Forums (1)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|