In addition to the figure -
let I be the enter of the circle
and P the point of tangency of RT
with the circle.
If t = tan((angle PIC)/2), then it
is easy to show that the area of
triangle RST is
sqrt(3)*(3 - t^2)
-------------------
1 - 3*t^2
Note: Angle PIC can be measured CW
or CCW. Thus, we can have one
or two positions for point P.
1a) sqrt(3)*(3 - t^2)
------------------- = 3*sqrt(3).
1 - 3*t^2
or t = 0.
Thus, P = C.
1b) sqrt(3)*(3 - t^2)
------------------- = 8.
1 - 3*t^2
8 - 3*sqrt(3)
or t = sqrt[ --------------- ].
24 - sqrt(3)
Thus, angle PIC =
8 - 3*sqrt(3)
2*arctan{ sqrt[ --------------- ] }
24 - sqrt(3)
~= 39.073817 degrees.
1c) sqrt(3)*(3 - t^2)
------------------- = 6*sqrt(3)
1 - 3*t^2
or t = sqrt[ 3/17 ].
Thus, angle PIC =
2*arctan{ sqrt[ 3/17 ] }
~= 45.572996 degrees.
2) For angle RTS to be a right angle,
angle PIC must equal 30 degrees.
Thus, area [RST]
sqrt(3)*(3 - tan(15)^2)
= -------------------------
1 - 3*tan(15)^2
= 2*sqrt(3) + 3
~= 6.464102
|
Posted by Bractals
on 2009-10-03 14:51:58 |