In this alphametic equation, each of the small letters in bold denotes a different base b digit from 0 to b-1. Neither t nor n can be zero.
(ten)*(ten) - ten = ninety
Determine the minimum value of b, for which there exists at least one solution to the above equation.
DEFDBL A-Z
DIM used(100)
FOR b = 5 TO 100
FOR t = 1 TO b - 1
IF used(t) = 0 THEN
used(t) = 1
FOR n = 1 TO b - 1
IF used(n) = 0 THEN
used(n) = 1
FOR e = 0 TO b - 1
IF used(e) = 0 THEN
used(e) = 1
FOR i = 0 TO b - 1
IF used(i) = 0 THEN
used(i) = 1
FOR y = 0 TO b - 1
IF used(y) = 0 THEN
used(y) = 1
ten = t * b * b + e * b + n
ninety = y + b * (t + b * (e + b * (n + b * (i + b * (n)))))
IF ten * ten - ten = ninety THEN
PRINT b, t; e; n, n; i; n; e; t; y, ten; ninety
END IF
used(y) = 0
END IF
NEXT
used(i) = 0
END IF
NEXT
used(e) = 0
END IF
NEXT
used(n) = 0
END IF
NEXT
used(t) = 0
END IF
NEXT
NEXT
to get
11 6 7 4 4 0 4 7 6 1 807 650442
for the base, the numbers ten and ninety, and those values in decimal.
|
Posted by Charlie
on 2009-10-25 13:44:22 |