All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Splitting a 2 by N Rectangle (Posted on 2009-11-11) Difficulty: 3 of 5
Find an expression which yields the number of ways to split a 2 by N rectangle into two polyominoes. Rotations and reflections are NOT considered distinct.

For example, if N=1 there is only one way - two 1x1 squares.

If N=2 then there are two ways - one way is a 1x1 square with an "L" shape and two 2x1 rectangles as the other.

If N=3 then there are the 6 ways as depicted:

a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a


See The Solution Submitted by Brian Smith    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Table | Comment 1 of 3
The following table considers the number of ways that a polyomino of size 'x' can fit into a 2N array as defined in the problem.


Minor   [Two rows are considered]
Poly    N Cells in length
size    1   2   3   4   5   6   7   8
 1      1   1   2   2   3   3   4   4
 2          1   2   3   3   4   4   5
 3              2   2   3   3   4   4
 4                  3   3   4   4   5
 5                      3   3   4   4
 6                          4   4   5
 7                              4   4
 8                                  5
 Total  1   2   6  10  15  21  28  36
Interval 1 4 4 5 6 7 8

The first two totals and intervals are bit disconcerting but is
apparent from the 6 onwards we have the triangular series.

At best my expression therefore is:
No. of ways = N *(N +1) / 2 for N > 2

Edit only because of formatting issue of this frame.

Edited on November 12, 2009, 10:13 am
  Posted by brianjn on 2009-11-11 20:29:08

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information