A number N consisting of a string of sevens
i.e. N=77777...7777, is divisible by 199.
Find the last 4 digits of the quotient.
No programming, please.
(In reply to
Such a number exists. by Jer)
Indeed there are 99 7's in N, shown below, followed by the quotient and the common log of N verifying its 99-digit length.
list
5 N=7
10 while N@199>0
20 N=N*10+7
30 wend
40 print N
50 print N//199
60 print log(N)/log(10)
OK
run
7777777777777777777777777777777777777777777777777777777777777777777777777777777
77777777777777777777
3908431044109436069235064209938581797878280290340591848129536571747627024008933
556672250139586823
98.8908555305749319713
OK
|
Posted by Charlie
on 2010-02-05 16:47:53 |