It is a tricky cryptarithm, but still solvable.
I've solved it, why don't you?
ROME-SUM=RUSE
(In reply to
I know the trick (spoiler) by Steve Herman)
Each set below is listed in order of
ROME
SUM
RUSE
with the arabic decimal representation on the right:
DCVI 606
XLV 45
DLXI 561
DCVI 606
LXV 65
DXLI 541
MCVI 1106
XLV 45
MLXI 1061
MCVI 1106
LXV 65
MXLI 1041
DECLARE FUNCTION roman$ (n!)
CLS
FOR a = 10 TO 2000
FOR b = 10 TO a
ar$ = roman$(a)
br$ = roman$(b)
cr$ = roman$(a - b)
IF LEN(ar$) = 4 AND LEN(br$) = 3 AND LEN(cr$) = 4 THEN
IF LEFT$(ar$, 1) = LEFT$(cr$, 1) THEN
IF MID$(ar$, 3, 1) = RIGHT$(br$, 1) THEN
IF RIGHT$(ar$, 1) = RIGHT$(cr$, 1) THEN
IF MID$(br$, 2, 1) = MID$(cr$, 2, 1) THEN
IF INSTR(MID$(ar$, 2), LEFT$(ar$, 1)) = 0 THEN
good = 1
FOR i = 1 TO 3
FOR j = 1 TO 4
IF j <> i THEN
IF MID$(ar$, i, 1) = MID$(ar$, j, 1) THEN good = 0
IF MID$(br$, i, 1) = MID$(br$, j, 1) THEN good = 0
IF MID$(cr$, i, 1) = MID$(cr$, j, 1) THEN good = 0
END IF
NEXT
NEXT
IF good THEN
PRINT ar$, a
PRINT br$, b
PRINT cr$, a - b
PRINT
END IF
END IF
END IF
END IF
END IF
END IF
END IF
NEXT
NEXT
FUNCTION roman$ (n)
q = n \ 1000: r = n MOD 1000
r$ = STRING$(q, "M")
n2 = r
q = n2 \ 100: r = n2 MOD 100
SELECT CASE q
CASE 9: r$ = r$ + "CM"
CASE 5 TO 8: r$ = r$ + "D" + STRING$(q - 5, "C")
CASE 4: r$ = r$ + "CD"
CASE 0 TO 3: r$ = r$ + STRING$(q, "C")
END SELECT
n2 = r
q = n2 \ 10: r = n2 MOD 10
SELECT CASE q
CASE 9: r$ = r$ + "XC"
CASE 5 TO 8: r$ = r$ + "L" + STRING$(q - 5, "X")
CASE 4: r$ = r$ + "XL"
CASE 0 TO 3: r$ = r$ + STRING$(q, "X")
END SELECT
n2 = r
q = n2
SELECT CASE q
CASE 9: r$ = r$ + "IX"
CASE 5 TO 8: r$ = r$ + "V" + STRING$(q - 5, "I")
CASE 4: r$ = r$ + "IV"
CASE 0 TO 3: r$ = r$ + STRING$(q, "I")
END SELECT
roman$ = r$
END FUNCTION
|
Posted by Charlie
on 2010-02-12 15:45:35 |