The letters of TALES have been added to the grid to form six words, one being a lingual import into English.
L |
E |
A |
S |
T |
S |
L |
A |
T |
E |
S |
T |
A |
L |
E |
S |
T |
E |
A |
L |
T |
A |
E |
L |
S |
T |
A |
L |
E |
S |
Assign a base 10 digit to each of the letters in the grid to create an alphametic so that each row but one forms a 5-digit prime number.
This situation can occur in three ways, and logic should prevail.
(In reply to
re: computer solution by Dej Mar)
5 dim Used(9),Pv(12)
10 for L=0 to 9
15 Used(L)=1
20 for S=0 to 9
30 if Used(S)=0 then
35 :Used(S)=1
40 :for T=0 to 9
42 :if Used(T)=0 then
44 :Used(T)=1
50 :for A=0 to 9
52 :if Used(A)=0 then
54 :Used(A)=1
56 :for E=0 to 9
60 :if Used(E)=0 then
70 :Used(E)=1
75 :Least=L*10000+E*1000+A*100+S*10+T
76 :Slate=S*10000+L*1000+A*100+T*10+E
77 :Stale=S*10000+T*1000+A*100+L*10+E
78 :Steal=S*10000+T*1000+E*100+A*10+L
79 :Taels=T*10000+A*1000+E*100+L*10+S
80 :Tales=T*10000+A*1000+L*100+E*10+S
81 :Leats=L*10000+E*1000+A*100+T*10+S
82 :Salet=S*10000+A*1000+L*100+E*10+T
83 :Setal=S*10000+E*1000+T*100+A*10+L
84 :Stela=S*10000+T*1000+E*100+L*10+A
85 :Teals=T*10000+E*1000+A*100+L*10+S
86 :Tesla=T*10000+E*1000+S*100+L*10+A
181 :Prmcnt=0:for I=1 to 12:Pv(I)=0:next
182 :if prmdiv(Least)=Least then Prmcnt=Prmcnt+1:Pv(1)=1:endif
183 :if prmdiv(Slate)=Slate then Prmcnt=Prmcnt+1:Pv(2)=1:endif
184 :if prmdiv(Stale)=Stale then Prmcnt=Prmcnt+1:Pv(3)=1:endif
185 :if prmdiv(Steal)=Steal then Prmcnt=Prmcnt+1:Pv(4)=1:endif
186 :if prmdiv(Taels)=Taels then Prmcnt=Prmcnt+1:Pv(5)=1:endif
187 :if prmdiv(Tales)=Tales then Prmcnt=Prmcnt+1:Pv(6)=1:endif
188 :if prmdiv(Leats)=Leats then Prmcnt=Prmcnt+1:Pv(7)=1:endif
189 :if prmdiv(Salet)=Salet then Prmcnt=Prmcnt+1:Pv(8)=1:endif
190 :if prmdiv(Setal)=Setal then Prmcnt=Prmcnt+1:Pv(9)=1:endif
191 :if prmdiv(Stela)=Stela then Prmcnt=Prmcnt+1:Pv(10)=1:endif
192 :if prmdiv(Teals)=Teals then Prmcnt=Prmcnt+1:Pv(11)=1:endif
193 :if prmdiv(Tesla)=Tesla then Prmcnt=Prmcnt+1:Pv(12)=1:endif
200 :if Prmcnt>=Max then
205 :if Prmcnt>Max then Sct=0:Max=Prmcnt:endif
210 :print:print "least";Least;Pv(1):print "slate";Slate;Pv(2)
211 :print "stale";Stale;Pv(3):print "steal";Steal;Pv(4):print "taels";Taels;Pv(5)
215 :print "tales";Tales;Pv(6)
220 :print "leats";Leats;Pv(7):print "salet";Salet;Pv(8):print "setal";Setal;Pv(9)
221 :print "stela";Stela;Pv(10):print "teals";Teals;Pv(11)
225 :print "tesla";Tesla;Pv(12)
280 :print Prmcnt:Sct=Sct+1
290 :endif
291 :Used(E)=0
292 :endif
293 :next E
294 :Used(A)=0
295 :endif
296 :next A
297 :Used(T)=0
298 :endif
299 :next T
300 :Used(S)=0
310 :endif
320 next S
325 Used(L)=0
330 next L
350 print Sct
finds two solutions with 8 primes apiece:
least 73019 1
slate 17093 1
stale 19073 1
steal 19307 0
taels 90371 1
tales 90731 1
leats 73091 1
salet 10739 1
setal 13907 1
stela 19370 0
teals 93071 0
tesla 93170 0
8
least 73891 0
slate 97813 1
stale 91873 1
steal 91387 1
taels 18379 1
tales 18739 0
leats 73819 1
salet 98731 1
setal 93187 1
stela 91378 0
teals 13879 1
tesla 13978 0
8
And there are 14 solutions with 7 primes(leading zeros included, but with the leading zeros not shown on the printout):
least 7139 0
slate 30197 1
stale 39107 1
steal 39710 0
taels 91703 1
tales 91073 0
leats 7193 1
salet 31079 1
setal 37910 0
stela 39701 0
teals 97103 1
tesla 97301 1
7
least 15439 1
slate 31495 0
stale 39415 0
steal 39541 1
taels 94513 1
tales 94153 1
leats 15493 1
salet 34159 1
setal 35941 0
stela 39514 0
teals 95413 1
tesla 95314 0
7
least 18379 1
slate 71398 0
stale 79318 0
steal 79831 0
taels 93817 0
tales 93187 1
leats 18397 1
salet 73189 1
setal 78931 0
stela 79813 1
teals 98317 1
tesla 98713 1
7
least 13795 0
slate 91753 1
stale 95713 1
steal 95371 0
taels 57319 0
tales 57139 1
leats 13759 1
salet 97135 0
setal 93571 0
stela 95317 1
teals 53719 1
tesla 53917 1
7
least 18397 1
slate 91378 0
stale 97318 0
steal 97831 0
taels 73819 1
tales 73189 1
leats 18379 1
salet 93187 1
setal 98731 1
stela 97813 1
teals 78319 0
tesla 78913 0
7
least 27935 0
slate 32957 1
stale 35927 0
steal 35792 0
taels 59723 1
tales 59273 1
leats 27953 1
salet 39275 0
setal 37592 0
stela 35729 1
teals 57923 1
tesla 57329 1
7
least 29437 1
slate 32479 1
stale 37429 0
steal 37942 0
taels 74923 1
tales 74293 1
leats 29473 1
salet 34297 1
setal 39742 0
stela 37924 0
teals 79423 1
tesla 79324 0
7
least 21839 1
slate 32891 0
stale 39821 1
steal 39182 0
taels 98123 1
tales 98213 1
leats 21893 1
salet 38219 1
setal 31982 0
stela 39128 0
teals 91823 1
tesla 91328 0
7
least 32917 1
slate 13972 0
stale 17932 0
steal 17293 1
taels 79231 1
tales 79321 0
leats 32971 1
salet 19327 0
setal 12793 0
stela 17239 1
teals 72931 1
tesla 72139 1
7
least 41539 1
slate 34591 1
stale 39541 1
steal 39154 0
taels 95143 1
tales 95413 1
leats 41593 1
salet 35419 1
setal 31954 0
stela 39145 0
teals 91543 0
tesla 91345 0
7
least 51439 1
slate 35491 1
stale 39451 1
steal 39145 0
taels 94153 1
tales 94513 1
leats 51493 0
salet 34519 1
setal 31945 0
stela 39154 0
teals 91453 1
tesla 91354 0
7
least 53791 1
slate 95713 1
stale 91753 1
steal 91375 0
taels 17359 1
tales 17539 1
leats 53719 1
salet 97531 0
setal 93175 0
stela 91357 0
teals 13759 1
tesla 13957 0
7
least 53194 0
slate 95143 1
stale 94153 1
steal 94315 0
taels 41359 0
tales 41539 1
leats 53149 1
salet 91534 0
setal 93415 0
stela 94351 1
teals 43159 1
tesla 43951 1
7
least 79813 1
slate 17839 1
stale 13879 1
steal 13987 0
taels 38971 1
tales 38791 1
leats 79831 0
salet 18793 1
setal 19387 1
stela 13978 0
teals 39871 0
tesla 39178 0
7
Edited on March 21, 2010, 2:36 pm
|
Posted by Charlie
on 2010-03-21 14:26:08 |