All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Cover the Center (Posted on 2010-06-04) Difficulty: 5 of 5
Can you cover the center of a unit circle, such a Indi's circular pit?

You have a number (N) of identical planks of length L (0 < L <= 2). The planks have small width and negligible thickness, but very high strength and rigidity. No plank extends outside the circle. Both endpoints of each plank, with the exception of the N-th plank, must rest on either the circle or another plank. Neither weaving of planks nor cantilever designs are allowed. Covering the center means that the N-th plank crosses over the center of the circle.

For a given N, L is the minimum length plank necessary.
Obviously if N=1, then L=2.

What is the smallest L when N=2? N=3? N=4?

For larger N, is there an optimum algorithm to minimize L?

Can you determine a general relationship between N and L?

No Solution Yet Submitted by Larry    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Trying N=4 | Comment 2 of 6 |
My best solution looks sort of like an A with the first chord drawn a across the top.  L is about 1.3354 and the send and third planks lie about .352 from the ends of the first chord.

I haven't managed to find a closed form for L.

  Posted by Jer on 2010-06-04 17:14:45
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information