Home > Numbers
Perfect Squares Given (Posted on 2010-08-17) |
|
Substitute each of the capital letters in bold by a different base ten digit from 0 to 9 such that each of EEN, VIER and NEGEN is a perfect square. None of the numbers can contain any leading zero.
Disregarding the non leading zero condition, if we additionally impose the restriction that GIVEN is divisible by 23, then what will be the corresponding substitution?
answers
|
Comment 3 of 3 |
|
EEN VIER NEGEN 441 3249 14641 212 572 1212
Given leading zeroes with GIVEN MOD 23 = 0 EEN VIER NEGEN GIVEN 004 2601 40804 86204 22 512 2022 3748·23
|
Posted by Dej Mar
on 2010-08-18 03:08:06 |
|
|
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|