Given number of 1s in the binary representation of a natural number is 32.
Find the probability that the number is divisible by 3.
Find the probability if the number of 1s is 33.
The rightmost bit position has value 2^0, which is 1 mod 3. The next position represents 2^1, which is -1 mod 3. The values mod 3 alternate +/- 1.
As bits are added, one by one, (from an infinite number of possible positions?), the value mod 3 may go up or down by 1.
With only one bit, there is 50% probability the value will be -1 mod 3, and 50% probability it will be 1 mod 3.
Each subsequent added bit has probability 1/2 of being -1 and 1/2 of being 1. If you work out the transitional probabilities it turns out that in going from n bits to n+1 bits, the probability of each of the three possible mod values becomes the average of the prior probabilities of the other two values, so for example with two bits, the probability is 1/4 of being -1 mod 3 (that is, 0*1/2 + (1/2)*1/2); the probability is 1/2 of being 0 ((1/2)*1/2 + (1/2)*1/2); the probability of being 1 is 1/4 ((1/2)*1/2 + 0*1/2).
Subsequent numbers of bits can be handled in the same manner, transitioning from the previous number of binary digits:
bits Prob of -1 0 or 1 mod 3
1 1/2 0 1/2
2 1/4 1/2 1/4
3 3/8 1/4 3/8
4 5/16 3/8 5/16
5 11/32 5/16 11/32
6 21/64 11/32 21/64
7 43/128 21/64 43/128
8 85/256 43/128 85/256
9 171/512 85/256 171/512
10 341/1024 171/512 341/1024
11 683/2048 341/1024 683/2048
12 1365/4096 683/2048 1365/4096
13 2731/8192 1365/4096 2731/8192
14 5461/16384 2731/8192 5461/16384
15 10923/32768 5461/16384 10923/32768
16 21845/65536 10923/32768 21845/65536
17 43691/131072 21845/65536 43691/131072
18 87381/262144 43691/131072 87381/262144
19 174763/524288 87381/262144 174763/524288
20 349525/1048576 174763/524288 349525/1048576
21 699051/2097152 349525/1048576 699051/2097152
22 1398101/4194304 699051/2097152 1398101/4194304
23 2796203/8388608 1398101/4194304 2796203/8388608
24 5592405/16777216 2796203/8388608 5592405/16777216
25 11184811/33554432 5592405/16777216 11184811/33554432
26 22369621/67108864 11184811/33554432 22369621/67108864
27 44739243/134217728 22369621/67108864 44739243/134217728
28 89478485/268435456 44739243/134217728 89478485/268435456
29 178956971/536870912 89478485/268435456 178956971/536870912
30 357913941/1073741824 178956971/536870912 357913941/1073741824
31 715827883/2147483648 357913941/1073741824 715827883/2147483648
32 1431655765/4294967296 715827883/2147483648 1431655765/4294967296
33 2863311531/8589934592 1431655765/4294967296 2863311531/8589934592
as decimal fractions these are:
1 0.5 0 0.5
2 0.25 0.5 0.25
3 0.375 0.25 0.375
4 0.3125 0.375 0.3125
5 0.34375 0.3125 0.34375
6 0.328125 0.34375 0.328125
7 0.3359375 0.328125 0.3359375
8 0.33203125 0.3359375 0.33203125
9 0.333984375 0.33203125 0.333984375
10 0.3330078125 0.333984375 0.3330078125
11 0.33349609375 0.3330078125 0.33349609375
12 0.333251953125 0.33349609375 0.333251953125
13 0.3333740234375 0.333251953125 0.3333740234375
14 0.33331298828125 0.3333740234375 0.33331298828125
15 0.333343505859375 0.33331298828125 0.333343505859375
16 0.3333282470703125 0.333343505859375 0.3333282470703125
17 0.33333587646484375 0.3333282470703125 0.33333587646484375
18 0.333332061767578125 0.33333587646484375 0.333332061767578125
19 0.3333339691162109375 0.333332061767578125 0.3333339691162109375
20 0.3333330154418945312 0.3333339691162109375 0.3333330154418945312
21 0.3333334922790527343 0.3333330154418945312 0.3333334922790527343
22 0.3333332538604736328 0.3333334922790527343 0.3333332538604736328
23 0.3333333730697631835 0.3333332538604736328 0.3333333730697631835
24 0.3333333134651184082 0.3333333730697631835 0.3333333134651184082
25 0.3333333432674407958 0.3333333134651184082 0.3333333432674407958
26 0.3333333283662796020 0.3333333432674407958 0.3333333283662796020
27 0.3333333358168601989 0.3333333283662796020 0.3333333358168601989
28 0.3333333320915699005 0.3333333358168601989 0.3333333320915699005
29 0.3333333339542150497 0.3333333320915699005 0.3333333339542150497
30 0.3333333330228924751 0.3333333339542150497 0.3333333330228924751
31 0.3333333334885537624 0.3333333330228924751 0.3333333334885537624
32 0.3333333332557231187 0.3333333334885537624 0.3333333332557231187
33 0.3333333333721384406 0.3333333332557231187 0.3333333333721384406
The middle of the three values, the probability that the number is zero mod 3, is the sought value and the last two of these are the two parts asked for in the puzzle.
For first table:
10 Pm=1//2:Pp=1//2:Bits=1:Pz=0
20 for Bits=1 to 33
30 print Bits,Pm;Pz;Pp
40 PmNew=(Pp+Pz)//2
50 PzNew=(Pp+Pm)//2
60 PpNew=(Pz+Pm)//2
70 Pp=PpNew:Pz=PzNew:Pm=PmNew
80 next
For second table:
10 Pm=1//2:Pp=1//2:Bits=1:Pz=0
20 for Bits=1 to 33
30 print Bits,Pm/1;Pz/1;Pp/1
40 PmNew=(Pp+Pz)//2
50 PzNew=(Pp+Pm)//2
60 PpNew=(Pz+Pm)//2
70 Pp=PpNew:Pz=PzNew:Pm=PmNew
80 next
|
Posted by Charlie
on 2010-08-27 13:25:04 |