The length of each of the sides of a triangle ABC is a positive integer with: ∠ BAC = 2* ∠ ABC and, ∠ ACB is obtuse.
Find the minimum length of the perimeter.
DEFDBL A-Z
CLS
pi = 4 * ATN(1#)
FOR p = 1 TO 999
FOR s1 = 1 TO p / 3
FOR s2 = s1 + 1 TO (p - s1) / 2
s3 = p - s1 - s2
IF s3 < s1 + s2 THEN
c2a = (s1 * s1 + s3 * s3 - s2 * s2) / (2 * s1 * s3)
ca = (s2 * s2 + s3 * s3 - s1 * s1) / (2 * s2 * s3)
s2a = SQR(1 - c2a * c2a): sa = SQR(1 - ca * ca)
IF c2a > 0 AND ca > 0 AND sa > 0 THEN
twoA = ATN(s2a / c2a)
a = ATN(sa / ca)
ratio = twoA / a
obt = pi - twoA - a
IF obt + .000000001# > pi / 2 AND ABS(ratio - 2) < .000000001# THEN
PRINT USING "### ### ### #### ###.####### ###.####### ###.#######"; s1; s2; s3; p; a * 180 / pi; twoA * 180 / pi; (pi - twoA - a) * 180 / pi
END IF
END IF
END IF
NEXT
NEXT
NEXT p
finds
sides peri angles (degrees)
16 28 33 77 28.9550244 57.9100487 93.1349269
25 45 56 126 25.8419328 51.6838655 102.4742017
32 56 66 154 28.9550244 57.9100487 93.1349269
36 66 85 187 23.5564643 47.1129286 109.3306071
48 84 99 231 28.9550244 57.9100487 93.1349269
50 90 112 252 25.8419328 51.6838655 102.4742017
49 91 120 260 21.7867893 43.5735786 114.6396321
64 112 132 308 28.9550244 57.9100487 93.1349269
64 120 161 345 20.3641348 40.7282696 118.9075956
72 132 170 374 23.5564643 47.1129286 109.3306071
75 135 168 378 25.8419328 51.6838655 102.4742017
80 140 165 385 28.9550244 57.9100487 93.1349269
81 144 175 400 27.2660445 54.5320889 98.2018666
81 153 208 442 19.1881365 38.3762729 122.4355906
96 168 198 462 28.9550244 57.9100487 93.1349269
100 180 224 504 25.8419328 51.6838655 102.4742017
98 182 240 520 21.7867893 43.5735786 114.6396321
112 196 231 539 28.9550244 57.9100487 93.1349269
100 190 261 551 18.1948723 36.3897447 125.4153830
108 198 255 561 23.5564643 47.1129286 109.3306071
128 224 264 616 28.9550244 57.9100487 93.1349269
121 220 279 620 24.6199773 49.2399547 106.1400680
125 225 280 630 25.8419328 51.6838655 102.4742017
121 231 320 672 17.3414428 34.6828856 127.9756716
128 240 322 690 20.3641348 40.7282696 118.9075956
144 252 297 693 28.9550244 57.9100487 93.1349269
144 264 340 748 23.5564643 47.1129286 109.3306071
150 270 336 756 25.8419328 51.6838655 102.4742017
160 280 330 770 28.9550244 57.9100487 93.1349269
147 273 360 780 21.7867893 43.5735786 114.6396321
162 288 350 800 27.2660445 54.5320889 98.2018666
144 276 385 805 16.5978421 33.1956843 130.2064736
169 299 360 828 27.7957725 55.5915450 96.6126825
176 308 363 847 28.9550244 57.9100487 93.1349269
175 315 392 882 25.8419328 51.6838655 102.4742017
162 306 416 884 19.1881365 38.3762729 122.4355906
169 312 407 888 22.6198649 45.2397299 112.1404052
192 336 396 924 28.9550244 57.9100487 93.1349269
180 330 425 935 23.5564643 47.1129286 109.3306071
169 325 456 950 15.9423686 31.8847372 132.1728942
196 350 429 975 26.7655006 53.5310012 99.7034983
as all the cases with perimeter under 1000, so the smallest perimeter is 77.
Edited on December 10, 2010, 2:06 pm
|
Posted by Charlie
on 2010-12-10 14:05:11 |