A positive integer N fulfills the following demands:.
N is a 7 digit number.
N's digits can be arranged as seven distinct members of an arithmetic progression(either ascending or descending) .
N is a multiple of 11.
How many positive integers like N exist?
Evaluate the lowest and the highest N.
BONUS : How about 8 digits? Nine? All ten?
Rem: It is D4 for fully explained and errorless P&P result,might be significantly lower for software solution.
1042536
7 1728
9857463
10234576
8 13248
98764523
102347586
9 61632
987652413
DEFDBL A-Z
PRINT : PRINT
FOR sz = 7 TO 9
ct = 0
n = INT(10 ^ (sz - 1))
n = n + 11 - (n MOD 11)
DO
ns$ = LTRIM$(STR$(n))
c$ = ns$
REDIM used(9)
low = 99: high = -1
good = 1
FOR i = 1 TO LEN(c$)
d = VAL(MID$(c$, i, 1))
IF used(d) THEN good = 0: EXIT FOR
used(d) = 1
IF d < low THEN low = d
IF d > high THEN high = d
NEXT
IF good THEN
IF high - low = sz - 1 THEN
ct = ct + 1
IF did(sz) = 0 THEN PRINT prev$: PRINT ns$: did(sz) = 1
prev$ = ns$
END IF
END IF
n = n + 11
LOOP UNTIL n > 10 ^ sz
PRINT sz, ct
NEXT sz
PRINT prev$
|
Posted by Charlie
on 2010-12-11 17:06:09 |