In continuation of
5 Digit Number, let us define a 5-digit non leading zero base N (N > 3) positive integer x as a split number whenever, 3*x is a perfect square and, when the digits of x are split, the first number is double the second one.
How many split numbers are there whenever 11 ≤ N ≤ 36. What are the respective minimum and maximum values?
(Splitting a base-N 5-digit number into two numbers means 12345 into 1 and 2345 or, 123 and 45.)
5 cls:print "----------"
6 kill "5digii.txt"
7 open "5digii.txt" for output as #2
10 for N=11 to 36
20 Flag=1:Flag2=0
30 for D4=0 to N-1
40 for D5=0 to N-1
50 V2=D4*N+D5
60 V1=2*V2
70 if V1>=N^2 then
80 :D3=V1 @ N:D2=V1\N
90 :D1=D2\N:D2=D2 @ N
100 :V=V1*N^2+V2
110 :Sq=3*V
120 :Sr=int(sqrt(Sq)+0.5)
130 :if Sr*Sr=Sq then
135 :if Flag then
136 :print "base";N:Flag=0:Flag2=1
137 :print #2,"base";N:Flag=0:Flag2=1
139 :endif
140 :print D1;D2;D3;D4;D5,V;V1;V2
141 :print #2,D1;D2;D3;D4;D5,V;V1;V2,3*V;sqrt(3*V)
200 next D5
210 next D4
220 if Flag2 then print #2,
230 next N
finds the following. Each solution row contains the five digits of the base-N number, the decimal representation of the number, the decimal representation of the first part of the split (first 3 base-n digits), the decimal representation of the remainder of the number, three times the full value of the number in decimal, and that number's square root in decimal.
---- decimal ----------------
digits whole pt 1 pt 2 3x sq.root
base 11
1 0 7 5 9 15552 128 64 46656 216.0
1 3 8 7 4 19683 162 81 59049 243.0
1 7 2 9 1 24300 200 100 72900 270.0
base 12
1 0 6 6 3 21675 150 75 65025 255.0
1 6 0 9 0 31212 216 108 93636 306.0
base 13
1 4 5 8 9 38307 226 113 114921 339.0
base 14
1 4 10 9 5 51483 262 131 154449 393.0
base 16
1 5 6 10 11 87723 342 171 263169 513.0
base 17
1 5 12 11 6 111747 386 193 335241 579.0
base 19
1 6 7 12 13 174243 482 241 522729 723.0
base 20
1 6 14 13 7 213867 534 267 641601 801.0
base 22
1 7 8 14 15 312987 646 323 938961 969.0
base 23
1 7 16 15 8 373827 706 353 1121481 1059.0
base 25
1 8 9 16 17 521667 834 417 1565001 1251.0
base 26
1 8 18 17 9 610203 902 451 1830609 1353.0
base 28
1 9 10 18 19 820587 1046 523 2461761 1569.0
base 29
1 9 20 19 10 944163 1122 561 2832489 1683.0
base 31
1 10 11 20 21 1232643 1282 641 3697929 1923.0
base 32
1 10 22 21 11 1399467 1366 683 4198401 2049.0
base 34
1 11 12 22 23 1783323 1542 771 5349969 2313.0
base 35
1 11 24 23 12 2002467 1634 817 6007401 2451.0
a total of 21 solutions within the given range of bases.
|
Posted by Charlie
on 2011-01-03 16:55:37 |