All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Hill Numbers Settlement II (Posted on 2011-03-09) Difficulty: 3 of 5
A 7-digit base ten positive integer of the form ABCDEFG is called a modified hill number if the digits B, D and F satisfies: B = A + C (mod 10) , D = C + E (mod 10) and F= E + G (mod 10) (Each of the capital letters in bold denotes a digit from 0 to 9, whether same or different.)

Determine the probability that x is a modified hill number, given that x is a base ten positive integer chosen at random between 1000000 and 9999999 inclusively.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: answer | Comment 4 of 5 |
(In reply to answer by Dej Mar)

The 2145 figure is based on ignoring the "(mod 10)" notation and disallows such numbers as 2191219, where 1 = 2 + 9 (mod 10).


  Posted by Charlie on 2011-03-10 11:48:35
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information