(A) For a base ten positive integer P drawn at random between 10 and 99 inclusively, determine the probability that the first two digits (reading left to right) in the base ten
expansion of 2P is equal to P-1.
(B) For a base ten positive integer P drawn at random between 10 and 99 inclusively, determine the probability that the first two digits (reading left to right) in the base ten expansion of 6P is equal to P-1.
(In reply to
re(2): exploration turned up something strange by Jer)
Well, for such an exension, here's a start:
The integral powers of 2 are listed, and an asterisk is placed next to the beginning of an interval in which a solution is possible, regarding the integer part of P. For example 2^13 = 8192 is the first such marked range, as between 8192 and 16,192 there lies a number that is 2^13+ (the + representing a fraction < 1) where the first two digits are 12. In this case, the range of numbers that begin with 12 is [12,000 to 13,000) where the square bracket denotes that the first number is inclusive (a closed end to the set) and the second is exclusive (an open end to the set). Of course the power of 2, P, is found by taking the base 2 logarithm of these numbers. The range turns out to be approximately 13.5507467853832428865 to 13.666224002803178252681, the base 2 logs of 12,000 and 13,000 respectively. Similar subranges could be found for each of the starred ranges, such as between 131,072 and 262,144 there's a range 160,000 to 169,999.999... where the base 2 logs can be found for a range of values of P that are 17+ and lead to these values that start with 16.
10 1024
11 2048
12 4096
13 8192 *
14 16384
15 32768
16 65536
17 131072 *
18 262144
19 524288
20 1048576 *
21 2097152 *
22 4194304
23 8388608
24 16777216 *
25 33554432
26 67108864
27 134217728 *
28 268435456 *
29 536870912
30 1073741824
31 2147483648 *
32 4294967296
33 8589934592
34 17179869184 *
35 34359738368 *
36 68719476736
37 137438953472
38 274877906944 *
39 549755813888
40 1099511627776
41 2199023255552 *
42 4398046511104
43 8796093022208
44 17592186044416
45 35184372088832 *
46 70368744177664
47 140737488355328
48 281474976710656 *
49 562949953421312
50 1125899906842624
51 2251799813685248
52 4503599627370496 *
53 9007199254740992
54 18014398509481984
55 36028797018963968 *
56 72057594037927936
57 144115188075855872
58 288230376151711744 *
59 576460752303423488 *
60 1152921504606846976
61 2305843009213693952
62 4611686018427387904 *
63 9223372036854775808
64 18446744073709551616
65 36893488147419103232 *
66 73786976294838206464
67 147573952589676412928
68 295147905179352825856
69 590295810358705651712 *
70 1180591620717411303424
71 2361183241434822606848
72 4722366482869645213696 *
73 9444732965739290427392
74 18889465931478580854784
75 37778931862957161709568 *
76 75557863725914323419136 *
77 151115727451828646838272 *
78 302231454903657293676544
79 604462909807314587353088 *
80 1208925819614629174706176
81 2417851639229258349412352
82 4835703278458516698824704 *
83 9671406556917033397649408
84 19342813113834066795298816
85 38685626227668133590597632
86 77371252455336267181195264 *
87 154742504910672534362390528
88 309485009821345068724781056
89 618970019642690137449562112 *
90 1237940039285380274899124224
91 2475880078570760549798248448
92 4951760157141521099596496896 *
93 9903520314283042199192993792
94 19807040628566084398385987584
95 39614081257132168796771975168
96 79228162514264337593543950336 *
97 158456325028528675187087900672
98 316912650057057350374175801344
99 633825300114114700748351602688
For the powers of 6, I'll leave it to you to mark the ranges in which to look for such subranges:
10 60466176
11 362797056
12 2176782336
13 13060694016
14 78364164096
15 470184984576
16 2821109907456
17 16926659444736
18 101559956668416
19 609359740010496
20 3656158440062976
21 21936950640377856
22 131621703842267136
23 789730223053602816
24 4738381338321616896
25 28430288029929701376
26 170581728179578208256
27 1023490369077469249536
28 6140942214464815497216
29 36845653286788892983296
30 221073919720733357899776
31 1326443518324400147398656
32 7958661109946400884391936
33 47751966659678405306351616
34 286511799958070431838109696
35 1719070799748422591028658176
36 10314424798490535546171949056
37 61886548790943213277031694336
38 371319292745659279662190166016
39 2227915756473955677973140996096
40 13367494538843734067838845976576
41 80204967233062404407033075859456
42 481229803398374426442198455156736
43 2887378820390246558653190730940416
44 17324272922341479351919144385642496
45 103945637534048876111514866313854976
46 623673825204293256669089197883129856
47 3742042951225759540014535187298779136
48 22452257707354557240087211123792674816
49 134713546244127343440523266742756048896
50 808281277464764060643139600456536293376
51 4849687664788584363858837602739217760256
52 29098125988731506183153025616435306561536
53 174588755932389037098918153698611839369216
54 1047532535594334222593508922191671036215296
55 6285195213566005335561053533150026217291776
56 37711171281396032013366321198900157303750656
57 226267027688376192080197927193400943822503936
58 1357602166130257152481187563160405662935023616
59 8145612996781542914887125378962433977610141696
60 48873677980689257489322752273774603865660850176
61 293242067884135544935936513642647623193965101056
62 1759452407304813269615619081855885739163790606336
63 10556714443828879617693714491135314434982743638016
64 63340286662973277706162286946811886609896461828096
65 380041719977839666236973721680871319659378770968576
66 2280250319867037997421842330085227917956272625811456
67 13681501919202227984531053980511367507737635754868736
68 82089011515213367907186323883068205046425814529212416
69 492534069091280207443117943298409230278554887175274496
70 2955204414547681244658707659790455381671329323051646976
71 17731226487286087467952245958742732290027975938309881856
72 106387358923716524807713475752456393740167855629859291136
73 638324153542299148846280854514738362441007133779155746816
74 3829944921253794893077685127088430174646042802674934480896
75 22979669527522769358466110762530581047876256816049606885376
76 137878017165136616150796664575183486287257540896297641312256
77 827268102990819696904779987451100917723545245377785847873536
78 4963608617944918181428679924706605506341271472266715087241216
79 29781651707669509088572079548239633038047628833600290523447296
80 178689910246017054531432477289437798228285773001601743140683776
81 1072139461476102327188594863736626789369714638009610458844102656
82 6432836768856613963131569182419760736218287828057662753064615936
83 38597020613139683778789415094518564417309726968345976518387695616
84 231582123678838102672736490567111386503858361810075859110326173696
85 1389492742073028616036418943402668319023150170860455154661957042176
86 8336956452438171696218513660416009914138901025162730927971742253056
87 50021738714629030177311081962496059484833406150976385567830453518336
88 300130432287774181063866491774976356909000436905858313406982721110016
89 1800782593726645086383198950649858141454002621435149880441896326660096
90 10804695562359870518299193703899148848724015728610899282651377959960576
91 64828173374159223109795162223394893092344094371665395695908267759763456
92 388969040244955338658770973340369358554064566229992374175449606558580736
93 2333814241469732031952625840042216151324387397379954245052697639351484416
94 14002885448818392191715755040253296907946324384279725470316185836108906496
95 84017312692910353150294530241519781447677946305678352821897115016653438976
96 504103876157462118901767181449118688686067677834070116931382690099920633856
97 3024623256944772713410603088694712132116406067004420701588296140599523803136
98 18147739541668636280463618532168272792698436402026524209529776843597142818816
99 108886437250011817682781711193009636756190618412159145257178661061582856912896
|
Posted by Charlie
on 2011-03-17 15:29:19 |