All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Maximum Cevian Triangle (Posted on 2011-06-02) Difficulty: 4 of 5
Let cevians BE and CF of ΔABC intersect at point D.

If Area(ΔABC) = 1, then find the maximum Area(ΔDEF) as points E and F vary over sides AC and AB respectively. Prove your result.

See The Solution Submitted by Bractals    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution Comment 1 of 1
Let E and F divide AC and AB in the ratios x:(1-x) and y:(1-y) respectively.
Using square brackets to denote areas, with [ABC] = 1, and [DEF] = U,

[CDE]    = [ACF] - [AEF] - [DEF]               =  y - xy - U
[BDF]    = [ABE] - [AEF] - [DEF]                          =  x - xy - U   
[BCD]   = [ABC] - [ABE] - [ACF] + [AEF] + [DEF] =  1 - x - y + xy + U

Also,                     [DEF]/[BDF]  =  [CDE]/[BCD]
so:                        [DEF][BCD]   =  [BDF][CDE]

which gives        U(1 - x - y + xy + U)  =  (x - xy - U)(y - xy - U)
                        U(1 - x - y + xy +x - xy +y - xy)  =  (x - xy)(y - xy)
                        U  =  xy(1 - x)(1 - y)/(1 - xy)                                          (1)

For maximum U, putting the partial derivative of U wrt x equal to zero:

(1 - xy)(1 - 2x) = x(1 - x)(-y)     which gives        x2y - 2x + 1 = 0             (2)

Similarly for the partial derivative wrt y:              y2x - 2y + 1 = 0             (3)

(2) - (3) gives                (x - y)(xy - 2) = 0

Since 0 < x,y < 1, (xy - 2) < 0, so the only solution is x = y ( = xm say).

Equation (2) now gives:              xm3 - 2xm + 1 = 0          

                                    (xm - 1)(xm2 + xm - 1) = 0

Since x < 1, the only solution is: xm = (sqrt(5) - 1)/2   ~ 0.61803..

and (1) gives     Umax      =  xm2(1 - xm)2/(1 - xm2)

                                    =  xm2(1 - xm)/(1 + xm)

                                    =  0.25(sqrt(5) - 1)2(3 - sqrt(5))/(sqrt(5) + 1)

   Maximum area            =  (5sqrt(5) - 11)/2

                                    ~  0.09017



  Posted by Harry on 2011-06-08 01:10:52
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information