Let us place at random the digits from 1 to 9 into the cells of 3x3 square.
What is the probability of getting a configuration such that the 8 sums (3 rows, 3 columns and 2 main diagonals) will be represented by 8 distinct numbers?
Construct at least one such square.
Extra challenge:
Same two tasks for 4x4 square , numbers 1 to 16 and 10 distinct sums.
(In reply to
re(3): computer solution ?????? by Ady TZIDON)
n(1) = a + b + c + d
n(2) = e + f + g + h
n(3) = i + j + k + l
n(4) = m + n + o + p
n(5) = a + e + i + m
n(6) = b + f + j + n
n(7) = c + g + k + o
n(8) = d + h + l + p
n(9) = a + f + g + h
n(10) = d + g + j + m
should have been
n(1) = a + b + c + d
n(2) = e + f + g + h
n(3) = i + j + k + l
n(4) = m + n + o + p
n(5) = a + e + i + m
n(6) = b + f + j + n
n(7) = c + g + k + o
n(8) = d + h + l + p
n(9) = a + f + k + p
n(10) = d + g + j + m
(the n(9) set typed wrong)
replacement set:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 16 15 10 26 42 58 28 32 37 39 33 34
1 2 3 4
5 6 7 8
9 10 11 12
13 15 16 14 10 26 42 58 28 33 37 38 32 34
1 2 3 4
5 6 7 8
9 10 11 12
14 13 15 16 10 26 42 58 29 31 36 40 34 35
1 2 3 4
5 6 7 8
9 10 11 12
14 13 16 15 10 26 42 58 29 31 37 39 33 35
1 2 3 4
5 6 7 8
9 10 11 12
14 16 15 13 10 26 42 58 29 34 36 37 31 35
1 2 3 4
5 6 7 8
9 10 11 12
15 13 14 16 10 26 42 58 30 31 35 40 34 36
1 2 3 4
5 6 7 8
9 10 11 12
15 13 16 14 10 26 42 58 30 31 37 38 32 36
1 2 3 4
5 6 7 8
9 10 11 12
15 16 14 13 10 26 42 58 30 34 35 37 31 36
1 2 3 4
5 6 7 8
9 10 11 12
16 14 13 15 10 26 42 58 31 32 34 39 33 37
|
Posted by Charlie
on 2011-07-13 11:41:12 |