3 integers form an arithmetic progression with d=2 i.e. a, a+2, a+4.
The sum of their squares is a 4-digit number divisible by 1111.
List
all
possible triplets.
The relevent subset of such progressions follows, together with the sum of the squares of their members:
-22 -20 -18 1208
-21 -19 -17 1091
-20 -18 -16 980
-19 -17 -15 875
-18 -16 -14 776
-17 -15 -13 683
-16 -14 -12 596
-15 -13 -11 515
-14 -12 -10 440
-13 -11 -9 371
-12 -10 -8 308
-11 -9 -7 251
-10 -8 -6 200
-9 -7 -5 155
-8 -6 -4 116
-7 -5 -3 83
-6 -4 -2 56
-5 -3 -1 35
-4 -2 0 20
-3 -1 1 11
-2 0 2 8
-1 1 3 11
0 2 4 20
1 3 5 35
2 4 6 56
3 5 7 83
4 6 8 116
5 7 9 155
6 8 10 200
7 9 11 251
8 10 12 308
9 11 13 371
10 12 14 440
11 13 15 515
12 14 16 596
13 15 17 683
14 16 18 776
15 17 19 875
16 18 20 980
17 19 21 1091
18 20 22 1208
19 21 23 1331
No sum seems to be a rep-digit.
|
Posted by Charlie
on 2011-12-26 10:59:43 |