Consider the following results:
99^1 = 99
99^2 = 9801
99^3 = 970299
99^4 = 96059601
99^5 = 9509900499
Prove that 99^n ends in 99 for all odd n.
Source: mathschallenges 2003
|
||
perplexus dot info |
|
|
|||||||||||||||||