There are m white and n red marbles in a closed box.
Two players take turns on drawing randomly a marble, without returning it back.
The 1st player drawing a white marble wins.
Evaluate the probability that the first player wins.
Check your formula for (m,n)= (2,3) and (2,4).
m/(m+n) + (n/(m+n))*((n-1)/(m+n-1))*(m/(m+n-2)) + (n/(m+n))*((n-1)/(m+n-1))*((n-2)/(m+n-2))*((n-3)/(m+n-3))*(m/(m+n-4)) + ...
or in Sigma and Pi notation (Sum and Product):
Sum{i=0 to floor[n/2]} (m/(m+n-2*i)) * Prod{j=0 to 2*i-1}(n-j)/(m+n-j)
assuming that Prod will evaluate to 1 if 2*i-1 < 0, otherwise we'd have to take the first term of the original formula separately and start i off at 1 instead of zero. The Wikipedia article on Multiplication, in the section on Capital Pi notation states that for Pi{m to n}, "If m > n, the product is the empty product, with the value 1."
An alternative formulation is recursive:
p(a,0)=1
p(m,n) = m/(m+n) + (n/(m+n))*(1 - p(m,n-1)) when n>0,
as the first player can win on the first try, or, with the reciprocal probability, after the second player is given a shot but ultimately fails to win.
Both are implemented in:
DECLARE FUNCTION p2# (m#, n#)
DECLARE FUNCTION p1# (m#, n#)
CLEAR , , 25000
DEFDBL A-Z
CLS
FOR n = 0 TO 33
PRINT n; p1(2, n), p2(2, n)
NEXT
FUNCTION p1 (m, n)
tot = 0
FOR i = 0 TO INT(n / 2)
prod = m / (m + n - 2 * i)
FOR j = 0 TO 2 * i - 1
prod = prod * (n - j) / (m + n - j)
NEXT j
tot = tot + prod
NEXT i
p1 = tot
END FUNCTION
FUNCTION p2 (m, n)
IF n = 0 THEN
p = 1
ELSE
p = m / (m + n) + (n / (m + n)) * (1 - p2(m, n - 1))
END IF
p2 = p
END FUNCTION
All with m=2:
n Sigma Pi recursive
0 1 1
1 .6666666666666666 .6666666666666666
2 .6666666666666666 .6666666666666667
3 .6 .6
4 .6 .6
5 .5714285714285714 .5714285714285714
6 .5714285714285715 .5714285714285714
7 .5555555555555555 .5555555555555556
8 .5555555555555556 .5555555555555556
9 .5454545454545454 .5454545454545454
10 .5454545454545454 .5454545454545455
11 .5384615384615384 .5384615384615384
12 .5384615384615383 .5384615384615384
13 .5333333333333333 .5333333333333333
14 .5333333333333333 .5333333333333333
15 .5294117647058824 .5294117647058824
16 .5294117647058824 .5294117647058824
17 .5263157894736842 .5263157894736842
18 .5263157894736842 .5263157894736843
19 .5238095238095238 .5238095238095237
20 .5238095238095238 .5238095238095238
21 .5217391304347825 .5217391304347826
22 .5217391304347827 .5217391304347826
23 .52 .52
24 .52 .52
25 .5185185185185185 .5185185185185185
26 .5185185185185185 .5185185185185186
27 .5172413793103449 .5172413793103448
28 .5172413793103449 .5172413793103449
29 .5161290322580645 .5161290322580645
30 .5161290322580647 .5161290322580645
31 .515151515151515 .5151515151515151
32 .5151515151515152 .5151515151515151
33 .5142857142857142 .5142857142857143
As given above, p(2,3) = p(2,4) = .6
|
Posted by Charlie
on 2012-10-17 12:43:07 |