Each of the letters should be replaced by a different base ten digit from 1 to 9 to satisfy this alphanumeric equation:
A D G
------ + ------ + ------ = 1, with A > D > G, B > C and, E > F
B*C E*F HI
Can you solve it, knowing that if I told you whether HIG is a perfect square or not, you would be able to tell me all the other letters?
Note: Each of HI and HIG represents the concatenation of the digits.
10 V$="123456789":H$=V$
15 repeat
20 gosub *Permute(&V$)
30 A=val(mid(V$,1,1))
40 D=val(mid(V$,4,1))
50 G=val(mid(V$,7,1))
60 if A>D and D>G then
70 :B=val(mid(V$,2,1))
80 :C=val(mid(V$,3,1))
90 :E=val(mid(V$,5,1))
100 :F=val(mid(V$,6,1))
110 :H=val(mid(V$,8,1))
120 :I=val(mid(V$,9,1))
130 :if B>C and E>F then
140 :Hi=10*H+I
150 :Hig=10*Hi+G
160 :Sr=sqrt(Hig)
170 :if A//(B*C)+D//(E*F)+G//(Hi)=1 then
180 :print A;B;C;D;E;F;G;H;I,Hig;Sr
535 until V$=H$
540 end
800
finds the following all satisfy the equation:
a b c d e f g h i hig sqrt(hig)
5 6 1 4 9 8 3 2 7 273 16.5227116418583060617
6 8 1 5 9 4 3 2 7 273 16.5227116418583060617
8 4 3 6 9 7 5 2 1 215 14.662878298615180145
8 6 4 5 9 1 3 2 7 273 16.5227116418583060617
9 6 2 5 7 3 1 8 4 841 29.0
9 7 3 8 6 4 5 2 1 215 14.662878298615180145
so the penultimate line is the answer, where hig = 841 = 29^2, the only perfect square value for hig.
|
Posted by Charlie
on 2012-12-05 12:22:19 |