#1
Vol D = Vol E
Vol R - Vol E = Vol E
Vol R = 2 * Vol E
(4/3)*pi*R^3 = 2*(4/3)*pi*r^3
R = r*cuberoot(2)
#2-#4
Let d be the distance between centers.
Vol B = Integral from d-r to x_0 of
[r^2 - (x-d)^2]dx
+ Integral from x_0 to R of
[R^2 - x^2]dx
where x_0 = (d^2 + R^2 - r^2)/(2d)
Vol B = pi*P(d)/(12d) where
P(d) = d^4 - 6(R^2 + r^2)d^2
+ 8(R^3 + r^3) - 3(R^2 - r^2)^2
This checks out:
If d = R+r, then the spheres are externally
tangent and Vol B = 0.
If d = R-r, then the spheres are internally
tangent and Vol B = Vol E.
For #2, Vol R - Vol E = Vol B
(4/3)*pi*(R^3 - r^3) = pi*P(d)/(12d)
or
d^4 - 6(R^2 + r^2)d^2 - 8(R^3 - 3r^3)
- 3(R^2 - r^2)^2 = 0
For #3, Vol A = Vol B
Vol R - Vol B = Vol B
Vol R = 2 * Vol B
(4/3)*pi*R^3 = 2*pi*P(d)/(12d)
or
d^4 - 6(R^2 + r^2)d^2 + 8r^3*d
- 3(R^2 - r^2)^2 = 0
For #4, Vol C = Vol B
Vol E - Vol B = Vol B
Vol E = 2 * Vol B
(4/3)*pi*r^3 = 2*pi*P(d)/(12d)
or
d^4 - 6(R^2 + r^2)d^2 + 8R^3*d
- 3(R^2 - r^2)^2 = 0
I will let somebody with Mathematica solve the
quartics of #2-#4.
Edited on December 24, 2012, 4:54 pm
|
Posted by Bractals
on 2012-12-24 16:45:12 |