A magician asked a spectator to think of a three-digit number ABC and then to tell him the sum of numbers ACB, BAC, BCA, CAB, and CBA. He claims that when he knows this sum he can determine the original number. Is that so?
Each original number has a unique resulting sum when the given procedure is followed. The following list is in the order of the resulting sum, and there are no duplicates in that second column.
100 122
200 244
110 334
101 343
300 366
210 456
201 465
400 488
120 546
111 555
102 564
310 578
301 587
500 610
220 668
211 677
202 686
410 700
401 709
600 732
130 758
121 767
112 776
103 785
320 790
311 799
302 808
510 822
501 831
700 854
230 880
221 889
212 898
203 907
420 912
411 921
402 930
610 944
601 953
140 970
800 976
131 979
122 988
113 997
330 1002
104 1006
321 1011
312 1020
303 1029
520 1034
511 1043
502 1052
710 1066
701 1075
240 1092
900 1098
231 1101
222 1110
213 1119
430 1124
204 1128
421 1133
412 1142
403 1151
620 1156
611 1165
602 1174
150 1182
810 1188
141 1191
801 1197
132 1200
123 1209
340 1214
114 1218
331 1223
105 1227
322 1232
313 1241
530 1246
304 1250
521 1255
512 1264
503 1273
720 1278
711 1287
702 1296
250 1304
910 1310
241 1313
901 1319
232 1322
223 1331
440 1336
214 1340
431 1345
205 1349
422 1354
413 1363
630 1368
404 1372
621 1377
612 1386
160 1394
603 1395
820 1400
151 1403
811 1409
142 1412
802 1418
133 1421
350 1426
124 1430
341 1435
115 1439
332 1444
106 1448
323 1453
540 1458
314 1462
531 1467
305 1471
522 1476
513 1485
730 1490
504 1494
721 1499
712 1508
260 1516
703 1517
920 1522
251 1525
911 1531
242 1534
902 1540
233 1543
450 1548
224 1552
441 1557
215 1561
432 1566
206 1570
423 1575
640 1580
414 1584
631 1589
405 1593
622 1598
170 1606
613 1607
830 1612
161 1615
604 1616
821 1621
152 1624
812 1630
143 1633
360 1638
803 1639
134 1642
351 1647
125 1651
342 1656
116 1660
333 1665
107 1669
550 1670
324 1674
541 1679
315 1683
532 1688
306 1692
523 1697
740 1702
514 1706
731 1711
505 1715
722 1720
270 1728
713 1729
930 1734
261 1737
704 1738
921 1743
252 1746
912 1752
243 1755
460 1760
903 1761
234 1764
451 1769
225 1773
442 1778
216 1782
433 1787
207 1791
650 1792
424 1796
641 1801
415 1805
632 1810
406 1814
180 1818
623 1819
840 1824
171 1827
614 1828
831 1833
162 1836
605 1837
822 1842
153 1845
370 1850
813 1851
144 1854
361 1859
804 1860
135 1863
352 1868
126 1872
343 1877
117 1881
560 1882
334 1886
108 1890
551 1891
325 1895
542 1900
316 1904
533 1909
307 1913
750 1914
524 1918
741 1923
515 1927
732 1932
506 1936
280 1940
723 1941
940 1946
271 1949
714 1950
931 1955
262 1958
705 1959
922 1964
253 1967
470 1972
913 1973
244 1976
461 1981
904 1982
235 1985
452 1990
226 1994
443 1999
217 2003
660 2004
434 2008
208 2012
651 2013
425 2017
642 2022
416 2026
190 2030
633 2031
407 2035
850 2036
181 2039
624 2040
841 2045
172 2048
615 2049
832 2054
163 2057
606 2058
380 2062
823 2063
154 2066
371 2071
814 2072
145 2075
362 2080
805 2081
136 2084
353 2089
127 2093
570 2094
344 2098
118 2102
561 2103
335 2107
109 2111
552 2112
326 2116
543 2121
317 2125
760 2126
534 2130
308 2134
751 2135
525 2139
742 2144
516 2148
290 2152
733 2153
507 2157
950 2158
281 2161
724 2162
941 2167
272 2170
715 2171
932 2176
263 2179
706 2180
480 2184
923 2185
254 2188
471 2193
914 2194
245 2197
462 2202
905 2203
236 2206
453 2211
227 2215
670 2216
444 2220
218 2224
661 2225
435 2229
209 2233
652 2234
426 2238
643 2243
417 2247
860 2248
191 2251
634 2252
408 2256
851 2257
182 2260
625 2261
842 2266
173 2269
616 2270
390 2274
833 2275
164 2278
607 2279
381 2283
824 2284
155 2287
372 2292
815 2293
146 2296
363 2301
806 2302
137 2305
580 2306
354 2310
128 2314
571 2315
345 2319
119 2323
562 2324
336 2328
553 2333
327 2337
770 2338
544 2342
318 2346
761 2347
535 2351
309 2355
752 2356
526 2360
743 2365
517 2369
960 2370
291 2373
734 2374
508 2378
951 2379
282 2382
725 2383
942 2388
273 2391
716 2392
490 2396
933 2397
264 2400
707 2401
481 2405
924 2406
255 2409
472 2414
915 2415
246 2418
463 2423
906 2424
237 2427
680 2428
454 2432
228 2436
671 2437
445 2441
219 2445
662 2446
436 2450
653 2455
427 2459
870 2460
644 2464
418 2468
861 2469
192 2472
635 2473
409 2477
852 2478
183 2481
626 2482
843 2487
174 2490
617 2491
391 2495
834 2496
165 2499
608 2500
382 2504
825 2505
156 2508
373 2513
816 2514
147 2517
590 2518
364 2522
807 2523
138 2526
581 2527
355 2531
129 2535
572 2536
346 2540
563 2545
337 2549
780 2550
554 2554
328 2558
771 2559
545 2563
319 2567
762 2568
536 2572
753 2577
527 2581
970 2582
744 2586
518 2590
961 2591
292 2594
735 2595
509 2599
952 2600
283 2603
726 2604
943 2609
274 2612
717 2613
491 2617
934 2618
265 2621
708 2622
482 2626
925 2627
256 2630
473 2635
916 2636
247 2639
690 2640
464 2644
907 2645
238 2648
681 2649
455 2653
229 2657
672 2658
446 2662
663 2667
437 2671
880 2672
654 2676
428 2680
871 2681
645 2685
419 2689
862 2690
193 2693
636 2694
853 2699
184 2702
627 2703
844 2708
175 2711
618 2712
392 2716
835 2717
166 2720
609 2721
383 2725
826 2726
157 2729
374 2734
817 2735
148 2738
591 2739
365 2743
808 2744
139 2747
582 2748
356 2752
573 2757
347 2761
790 2762
564 2766
338 2770
781 2771
555 2775
329 2779
772 2780
546 2784
763 2789
537 2793
980 2794
754 2798
528 2802
971 2803
745 2807
519 2811
962 2812
293 2815
736 2816
953 2821
284 2824
727 2825
944 2830
275 2833
718 2834
492 2838
935 2839
266 2842
709 2843
483 2847
926 2848
257 2851
474 2856
917 2857
248 2860
691 2861
465 2865
908 2866
239 2869
682 2870
456 2874
673 2879
447 2883
890 2884
664 2888
438 2892
881 2893
655 2897
429 2901
872 2902
646 2906
863 2911
194 2914
637 2915
854 2920
185 2923
628 2924
845 2929
176 2932
619 2933
393 2937
836 2938
167 2941
384 2946
827 2947
158 2950
375 2955
818 2956
149 2959
592 2960
366 2964
809 2965
583 2969
357 2973
574 2978
348 2982
791 2983
565 2987
339 2991
782 2992
556 2996
773 3001
547 3005
990 3006
764 3010
538 3014
981 3015
755 3019
529 3023
972 3024
746 3028
963 3033
294 3036
737 3037
954 3042
285 3045
728 3046
945 3051
276 3054
719 3055
493 3059
936 3060
267 3063
484 3068
927 3069
258 3072
475 3077
918 3078
249 3081
692 3082
466 3086
909 3087
683 3091
457 3095
674 3100
448 3104
891 3105
665 3109
439 3113
882 3114
656 3118
873 3123
647 3127
864 3132
195 3135
638 3136
855 3141
186 3144
629 3145
846 3150
177 3153
394 3158
837 3159
168 3162
385 3167
828 3168
159 3171
376 3176
819 3177
593 3181
367 3185
584 3190
358 3194
575 3199
349 3203
792 3204
566 3208
783 3213
557 3217
774 3222
548 3226
991 3227
765 3231
539 3235
982 3236
756 3240
973 3245
747 3249
964 3254
295 3257
738 3258
955 3263
286 3266
729 3267
946 3272
277 3275
494 3280
937 3281
268 3284
485 3289
928 3290
259 3293
476 3298
919 3299
693 3303
467 3307
684 3312
458 3316
675 3321
449 3325
892 3326
666 3330
883 3335
657 3339
874 3344
648 3348
865 3353
196 3356
639 3357
856 3362
187 3365
847 3371
178 3374
395 3379
838 3380
169 3383
386 3388
829 3389
377 3397
594 3402
368 3406
585 3411
359 3415
576 3420
793 3425
567 3429
784 3434
558 3438
775 3443
549 3447
992 3448
766 3452
983 3457
757 3461
974 3466
748 3470
965 3475
296 3478
739 3479
956 3484
287 3487
947 3493
278 3496
495 3501
938 3502
269 3505
486 3510
929 3511
477 3519
694 3524
468 3528
685 3533
459 3537
676 3542
893 3547
667 3551
884 3556
658 3560
875 3565
649 3569
866 3574
197 3577
857 3583
188 3586
848 3592
179 3595
396 3600
839 3601
387 3609
378 3618
595 3623
369 3627
586 3632
577 3641
794 3646
568 3650
785 3655
559 3659
776 3664
993 3669
767 3673
984 3678
758 3682
975 3687
749 3691
966 3696
297 3699
957 3705
288 3708
948 3714
279 3717
496 3722
939 3723
487 3731
478 3740
695 3745
469 3749
686 3754
677 3763
894 3768
668 3772
885 3777
659 3781
876 3786
867 3795
198 3798
858 3804
189 3807
849 3813
397 3821
388 3830
379 3839
596 3844
587 3853
578 3862
795 3867
569 3871
786 3876
777 3885
994 3890
768 3894
985 3899
759 3903
976 3908
967 3917
298 3920
958 3926
289 3929
949 3935
497 3943
488 3952
479 3961
696 3966
687 3975
678 3984
895 3989
669 3993
886 3998
877 4007
868 4016
199 4019
859 4025
398 4042
389 4051
597 4065
588 4074
579 4083
796 4088
787 4097
778 4106
995 4111
769 4115
986 4120
977 4129
968 4138
299 4141
959 4147
498 4164
489 4173
697 4187
688 4196
679 4205
896 4210
887 4219
878 4228
869 4237
399 4263
598 4286
589 4295
797 4309
788 4318
779 4327
996 4332
987 4341
978 4350
969 4359
499 4385
698 4408
689 4417
897 4431
888 4440
879 4449
599 4507
798 4530
789 4539
997 4553
988 4562
979 4571
699 4629
898 4652
889 4661
799 4751
998 4774
989 4783
899 4873
999 4995
But how can the magician get to the original number from the second column result?
If all six permutations of the digits, including the original number, had been used, the result would have been 222*(A+B+C). But the original number is left out, so if one subtracts 222 successively A+B+C times, the result will be the negative of the original number. The magician performs the trick by successively subtracting 222, keeping track of how many he has subtracted until a negative number appears whose sum of digits matches the number of times he has subtracted 222. He now has the original number; the uniqueness of the transformed number assures that this will happen only for the original number.
Suppose the chosen spectator says the total is 1607. The results after successive subtractions of 222 are:
1 1385
2 1163
3 941
4 719
5 497
6 275
7 53
8 -169
9 -391
10 -613
First of all, the results don't go negative until the eighth subtraction, so the magician need not concern himself with the s.o.d. until then. After the 8th subtraction itself, the s.o.d. is clearly larger than 8, and likewise after the 9th subtraction, larger than 9. After the 10th subtraction the s.o.d. of -613 is indeed 10, so 613 was the original number, which can be verified in the table above.
Of course, with practice, the magician will know a lot of multiples of 222 and need not go through all the successive subtractions of 222--just know how many are accounted for.
Edited on February 23, 2013, 4:35 pm
|
Posted by Charlie
on 2013-02-23 16:33:19 |