Three positive integers are chosen at random without replacement from 1,2,....,64.
What is the probability that the numbers chosen are in geometric sequence?
Order of choice doesn't matter. For example, 4-1-2 would qualify as
numbers in geometric sequence.
Bonus Question:
Generalise this result (in terms of n) covering the situation where three positive integers are chosen at random without replacement from 1,2,.....,n2.
For the main case of n = 8; n^2=64, there are 58 positive outcomes out of the C(64,3)=41664 possible combinations of 3 chosen numbers, making the probability 58/41664 = 29/20832 ~= 0.0013920891 or 1/718.3448275862069:
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36
1 7 49
1 8 64
2 4 8
2 6 18
2 8 32
2 10 50
3 6 12
3 9 27
3 12 48
4 6 9
4 8 16
4 10 25
4 12 36
4 14 49
4 16 64
5 10 20
5 15 45
6 12 24
6 18 54
7 14 28
7 21 63
8 12 18
8 16 32
8 20 50
9 12 16
9 15 25
9 18 36
9 21 49
9 24 64
10 20 40
11 22 44
12 18 27
12 24 48
13 26 52
14 28 56
15 30 60
16 20 25
16 24 36
16 28 49
16 32 64
18 24 32
18 30 50
20 30 45
24 36 54
25 30 36
25 35 49
25 40 64
27 36 48
28 42 63
32 40 50
36 42 49
36 48 64
49 56 64
The following program produces a table of probabilities for other n up to 20 (i.e., n^2 up to 400):
DECLARE FUNCTION gcd# (a#, b#)
DECLARE FUNCTION combi# (n#, r#)
DEFDBL A-Z
FOR n = 2 TO 20
nsq = n * n
tot = 0
FOR a = 1 TO nsq - 1
FOR c = a + 1 TO nsq
b = INT(SQR(a * c) + .5)
IF b * b = a * c THEN tot = tot + 1: ' PRINT a; b; c
NEXT
NEXT
c = combi(nsq, 3)
g = gcd(tot, c)
tot2 = tot / g: c2 = c / g
PRINT USING "## #### ####### /######### #### / ####### #.##########"; n; nsq; tot; c; tot2; c2; tot / c
NEXT n
FUNCTION combi (n, r)
c = 1
FOR i = n TO n - r + 1 STEP -1
c = c * i
NEXT
FOR i = 2 TO r
c = c / i
NEXT
combi = c
END FUNCTION
FUNCTION gcd (a, b)
dnd = a: dvr = b
DO
q = INT(dnd / dvr): r = dnd - q * dvr
dnd = dvr: dvr = r
LOOP UNTIL dvr = 0
gcd = dnd
END FUNCTION
produces the following table including the 29 / 20832 probability when n^2 = 64, as in the first part of the puzzle:
n n^2 ways out of reduced decimal
(combinations) fraction probability
2 4 1 / 4 1 / 4 0.2500000000
3 9 4 / 84 1 / 21 0.0476190476
4 16 8 / 560 1 / 70 0.0142857143
5 25 16 / 2300 4 / 575 0.0069565217
6 36 27 / 7140 9 / 2380 0.0037815126
7 49 40 / 18424 5 / 2303 0.0021710812
8 64 58 / 41664 29 / 20832 0.0013920891
9 81 80 / 85320 2 / 2133 0.0009376465
10 100 105 / 161700 1 / 1540 0.0006493506
11 121 128 / 287980 32 / 71995 0.0004444753
12 144 158 / 487344 79 / 243672 0.0003242063
13 169 198 / 790244 99 / 395122 0.0002505555
14 196 237 / 1235780 237 / 1235780 0.0001917817
15 225 278 / 1873200 139 / 936600 0.0001484091
16 256 336 / 2763520 21 / 172720 0.0001215841
17 289 382 / 3981264 191 / 1990632 0.0000959494
18 324 435 / 5616324 145 / 1872108 0.0000774528
19 361 502 / 7775940 251 / 3887970 0.0000645581
20 400 574 / 10586800 41 / 756200 0.0000542185
|
Posted by Charlie
on 2013-02-28 12:46:10 |