I sought to see how
a and
b might appear if seen as fractions.
In the following program
a = j/k and
b = l/m.
A print-out (poorly formatted) from the listing appears below; 4 appears as the lowest product.
OPEN "c:\qb64\work\sum_prod.txt" FOR OUTPUT AS #1
FOR j = .1 TO 10 STEP .1
FOR k = .1 TO 10 STEP .1
FOR l = .1 TO 10 STEP .1
FOR m = .1 TO 10 STEP .1
IF (j / k + l / m) = (j / k) * (l / m) THEN
PRINT j; k; l; m, (j / k) * (l / m)
PRINT #1, j; k; l; m, (j / k) * (l / m)
END IF
NEXT: NEXT: NEXT: NEXT
CLOSE 1
.2 .1 .2 .1 4
.2 .1 .4 .2 4
.2 .1 .6 .3 4
.2 .1 2 1 4
.2 .1 8.599997 4.299998 4
.4 .2 .2 .1 4
.4 .2 .4 .2 4
.4 .2 .6 .3 4
.4 .2 2 1 4
.4 .2 8.599997 4.299998 4
.6 .3 .2 .1 4
.6 .3 .4 .2 4
.6 .3 .6 .3 4
.6 .3 2 1 4
.6 .3 8.599997 4.299998 4
1 .3 2 1.4 4.761905
2 .5 2 1.5 5.333334
2 .6 2 1.4 4.761905
2 .7 2 1.3 4.395605
2 .8000001 2 1.2 4.166667
2 .9000001 2 1.1 4.040404
2 1 .2 .1 4
2 1 .4 .2 4
2 1 .6 .3 4
2 1 2 1 4
2 1 8.599997 4.299998 4
2 1.1 2 .9000001 4.040404
2 1.2 2 .8000001 4.166667
2 1.3 2 .7 4.395605
2 1.4 1 .3 4.761905
2 1.4 2 .6 4.761905
2 1.5 2 .5 5.333334
8.199995 .5 8.199995 7.699995 17.46493
8.199995 7.699995 8.199995 .5 17.46493
8.399996 1.3 8.399996 7.099996 7.644633
8.399996 7.099996 8.399996 1.3 7.644633
8.499996 1.7 8.499996 6.799996 6.249997
8.499996 6.799996 8.499996 1.7 6.249997
8.599997 4.099998 8.599997 4.499998 4.008672
8.599997 4.199998 8.599997 4.399998 4.002164
8.599997 4.299998 .2 .1 4
8.599997 4.299998 .4 .2 4
8.599997 4.299998 .6 .3 4
8.599997 4.299998 2 1 4
8.599997 4.299998 8.599997 4.299998 4
8.599997 4.399998 8.599997 4.199998 4.002164
8.599997 4.499998 8.599997 4.099998 4.008672
|
Posted by brianjn
on 2013-04-12 22:49:45 |