You roll a k-sided die n times. What is the probability that each of the k faces appeared at least once?
If p(n) represents the probability of having chosen face n at least once, then by the inclusion/exclusion principle the probability of completing all of the faces is given by:
P = p(1)+p(2)+...+p(k) - p(1 or 2) - p(1 or 3) - ... - p((k-1) or k)
+ p(1 or 2 or 3) + ... + p((k-2) or (k-1) or k)
...
+/- p(1 or 2 or ... or k)
where the final +/- depends on the mod 2 parity of k.
All single-number probabilities are the same as are all double-number probabilities etc., so that for example, p(1)+p(2)+...+p(k) = k*p(1) = 1 - ((k-1)/k)^n.
The probability of getting at least one occurrence from a set of i faces is 1 minus the probability of getting none of them, or 1 - ((k-i)/k)^n.
The formula is formalized as:
Sigma{i=1 to k}(C(k,i)*(1 - ((k-i)/k)^n)) * (-1)^(i+1))
\ k:
n 2 3 4 5 6 7 8 9 10
2 0.50000 0.00000 0.00000 0.00000-0.00000-0.00000 0.00000-0.00000-0.00000
3 0.75000 0.22222 0.00000 0.00000-0.00000-0.00000 0.00000-0.00000-0.00000
4 0.87500 0.44444 0.09375 0.00000-0.00000-0.00000 0.00000-0.00000-0.00000
5 0.93750 0.61728 0.23438 0.03840-0.00000 0.00000 0.00000 0.00000-0.00000
6 0.96875 0.74074 0.38086 0.11520 0.01543-0.00000 0.00000-0.00000-0.00000
7 0.98438 0.82579 0.51270 0.21504 0.05401 0.00612 0.00000-0.00000-0.00000
8 0.99219 0.88340 0.62292 0.32256 0.11403 0.02448 0.00240 0.00000-0.00000
9 0.99609 0.92212 0.71136 0.42707 0.18904 0.05770 0.01081 0.00094-0.00000
10 0.99805 0.94803 0.78060 0.52255 0.27181 0.10491 0.02816 0.00468 0.00036
11 0.99902 0.96533 0.83399 0.60636 0.35621 0.16310 0.05576 0.01336 0.00200
12 0.99951 0.97688 0.87476 0.67800 0.43782 0.22845 0.09331 0.02862 0.00619
13 0.99976 0.98459 0.90570 0.73812 0.51386 0.29731 0.13932 0.05132 0.01427
14 0.99988 0.98972 0.92909 0.78791 0.58285 0.36657 0.19172 0.08146 0.02732
15 0.99994 0.99315 0.94673 0.82877 0.64421 0.43392 0.24825 0.11831 0.04595
16 0.99997 0.99543 0.96000 0.86208 0.69800 0.49772 0.30680 0.16074 0.07031
17 0.99998 0.99696 0.96998 0.88910 0.74463 0.55697 0.36556 0.20734 0.10009
18 0.99999 0.99797 0.97747 0.91094 0.78471 0.61115 0.42310 0.25670 0.13467
19 1.00000 0.99865 0.98310 0.92855 0.81892 0.66009 0.47835 0.30748 0.17320
20 1.00000 0.99910 0.98732 0.94272 0.84799 0.70387 0.53056 0.35851 0.21474
21 1.00000 0.99940 0.99049 0.95410 0.87258 0.74273 0.57927 0.40882 0.25832
22 1.00000 0.99960 0.99287 0.96324 0.89332 0.77700 0.62425 0.45765 0.30306
23 1.00000 0.99973 0.99465 0.97056 0.91076 0.80707 0.66542 0.50443 0.34813
24 1.00000 0.99982 0.99599 0.97644 0.92542 0.83335 0.70284 0.54875 0.39283
25 1.00000 0.99988 0.99699 0.98114 0.93770 0.85624 0.73665 0.59036 0.43660
26 1.00000 0.99992 0.99774 0.98491 0.94798 0.87612 0.76704 0.62912 0.47899
27 1.00000 0.99995 0.99831 0.98792 0.95659 0.89334 0.79426 0.66500 0.51963
28 1.00000 0.99996 0.99873 0.99033 0.96378 0.90824 0.81854 0.69803 0.55830
29 1.00000 0.99998 0.99905 0.99227 0.96979 0.92111 0.84013 0.72828 0.59483
30 1.00000 0.99998 0.99929 0.99381 0.97480 0.93221 0.85930 0.75588 0.62914
The above table includes k=2 for including a coin as a 2-sided die and 3 for a 3-sided pencil used as a die, and is from:
5 for K=2 to 10:print using(8,0),K;:next:print
10 for N=2 to 30
15 print using(3,0),N;
20 for K=2 to 10
30 Sum=0
40 for I=1 to K
50 Sum=Sum+combi(K,I)*(1-((K-I)/K)^N)*(-1)^(I+1)
60 next I
70 print using(2,5),Sum;
80 next:print
100 next:print
As a check, I'll simulate a 6-faced die rolled 12 times, with a million trials.
DEFDBL A-Z
n = 12: k = 6
FOR tr = 1 TO 1000000
REDIM used(k)
FOR roll = 1 TO n
r = INT(RND(1) * k + 1)
IF used(r) = 0 THEN used(0) = used(0) + 1
used(r) = 1
NEXT roll
IF used(0) = k THEN success = success + 1
PRINT USING "######## ##.#####"; tr; success / tr
NEXT tr
with the last line showing the success rate after 1,000,000 trials:
1000000 0.43745
agreeing statistically with the calculated 0.43782.
For the familiar 6-sided die, the probabilities as rational numbers are:
5 0 = 0
6 5/324 ~= 0.0154320987654320987
7 35/648 ~= 0.0540123456790123456
8 665/5832 ~= 0.1140260631001371742
9 245/1296 ~= 0.1890432098765432098
10 38045/139968 ~= 0.2718121284865112025
11 99715/279936 ~= 0.3562064186099679926
12 1654565/3779136 ~= 0.4378156806211790208
13 485485/944784 ~= 0.5138581940422361089
14 317181865/544195584 ~= 0.5828453488516363998
15 233718485/362797056 ~= 0.6442127385951003968
16 2279105465/3265173504 ~= 0.6980043976860593806
17 4862708305/6530347008 ~= 0.7446324520033836461
18 553436255195/705277476864 ~= 0.7847071164895857971
19 1155136002965/1410554953728 ~= 0.8189230769861569511
20 2691299309615/3173748645888 ~= 0.8479875408854210203
21 3692455480945/4231664861184 ~= 0.8725774847660946991
22 30241729508375/33853318889472 ~= 0.8933165344027712589
23 184994418145075/203119913336832 ~= 0.9107645582651482934
24 15225590090211325/16452712980283392 ~= 0.9254151645663163902
25 30855347500002025/32905425960566784 ~= 0.9376978598295146596
26 1122975934870626655/1184595334580404224 ~= 0.9479827432111204538
27 83938352963274355/87747802561511424 ~= 0.9565863818006538052
28 3425060881328615165/3553786003741212672 ~= 0.9637780321389404365
29 3446410906664072165/3553786003741212672 ~= 0.969785716707730165
30 1496550513734743428785/1535235553616203874304 ~= 0.9748018864008595101
|
Posted by Charlie
on 2013-07-12 17:54:06 |