From this set of digits {1,1,2,4,7,9,9,9,9} allot one digit to each cell of a 3 x 3 array so that each column and major diagonal (read top-down) and row (read left-to-right) is a 3-digit prime number, resulting in 8 primes in all.
Then repeat the process using this set: {1,1,1,3,4,6,9,9,9}.
DEFDBL A-Z
OPEN "8primesb.txt" FOR INPUT AS #1
CLS
DO
LINE INPUT #1, l$
a$ = MID$(l$, 2, 3)
b$ = MID$(l$, 7, 3)
c$ = MID$(l$, 12, 3)
abc$ = a$ + b$ + c$
good = 1
FOR i = 1 TO 9
ix = INSTR(abc$, MID$("112479999", i, 1))
IF ix = 0 THEN good = 0: EXIT FOR
abc$ = LEFT$(abc$, ix - 1) + MID$(abc$, ix + 1)
NEXT
IF good THEN
PRINT a$: PRINT b$: PRINT c$: PRINT
ct = ct + 1
END IF
LOOP UNTIL EOF(1)
CLOSE 1
'CLOSE 2
PRINT ct
ct = 0
OPEN "8primesb.txt" FOR INPUT AS #1
DO
LINE INPUT #1, l$
a$ = MID$(l$, 2, 3)
b$ = MID$(l$, 7, 3)
c$ = MID$(l$, 12, 3)
abc$ = a$ + b$ + c$
good = 1
FOR i = 1 TO 9
ix = INSTR(abc$, MID$("111346999", i, 1))
IF ix = 0 THEN good = 0: EXIT FOR
abc$ = LEFT$(abc$, ix - 1) + MID$(abc$, ix + 1)
NEXT
IF good THEN
PRINT a$: PRINT b$: PRINT c$: PRINT
ct = ct + 1
END IF
LOOP UNTIL EOF(1)
CLOSE 1
'CLOSE 2
PRINT ct
finds for part 1
419
929
971
499
127
991
941
929
719
and for part 2:
419
691
139
461
139
919
461
193
919
619
349
191
619
499
131
631
149
991
641
139
991
641
193
991
691
499
311
|
Posted by Charlie
on 2013-11-06 17:30:35 |