Three positive integers are chosen at random without replacement from 1,2,....,72. What is the probability that the numbers chosen are in
harmonic sequence?
Order of choice doesn't matter. For example, 6-3-2 would qualify as numbers in harmonic sequence.
Bonus Question:
Generalize this result (in terms of n) covering the situation where three positive integers are chosen at random without replacement from 1,2,...,n.
10 for N=4 to 90
15 Ct=0:Good=0
20 for A=1 to N-2
30 for B=A+1 to N-1
40 for C=B+1 to N
45 Ct=Ct+1
50 if 1//C-1//B=1//B-1//A then Good=Good+1
55 next
60 next
70 next
75 print N,Good//Ct,Good;Ct,Good/Ct
80 next
produces the table below, from which you can see that for the case n = 72, the probability is 1/1065.
n probability
reduced unreduced decimal
num den=C(n,3)
4 0 0 4 0
5 0 0 10 0
6 1/10 2 20 0.1
7 2/35 2 35 0.0571428571428571428
8 1/28 2 56 0.0357142857142857142
9 1/42 2 84 0.0238095238095238095
10 1/60 2 120 0.0166666666666666666
11 2/165 2 165 0.0121212121212121212
12 1/55 4 220 0.0181818181818181818
13 2/143 4 286 0.013986013986013986
14 1/91 4 364 0.010989010989010989
15 6/455 6 455 0.0131868131868131868
16 3/280 6 560 0.0107142857142857142
17 3/340 6 680 0.0088235294117647058
18 1/102 8 816 0.0098039215686274509
19 8/969 8 969 0.0082559339525283797
20 1/114 10 1140 0.0087719298245614034
21 1/133 10 1330 0.0075187969924812029
22 1/154 10 1540 0.0064935064935064935
23 10/1771 10 1771 0.0056465273856578204
24 3/506 12 2024 0.0059288537549407114
25 3/575 12 2300 0.005217391304347826
26 3/650 12 2600 0.0046153846153846153
27 4/975 12 2925 0.0041025641025641025
28 1/234 14 3276 0.0042735042735042735
29 1/261 14 3654 0.0038314176245210727
30 9/2030 18 4060 0.0044334975369458127
31 18/4495 18 4495 0.0040044493882091211
32 9/2480 18 4960 0.0036290322580645161
33 9/2728 18 5456 0.0032991202346041055
34 9/2992 18 5984 0.0030080213903743315
35 4/1309 20 6545 0.0030557677616501145
36 11/3570 22 7140 0.0030812324929971988
37 11/3885 22 7770 0.0028314028314028313
38 11/4218 22 8436 0.0026078710289236604
39 22/9139 22 9139 0.0024072655651603019
40 3/1235 24 9880 0.0024291497975708501
41 6/2665 24 10660 0.0022514071294559099
42 1/410 28 11480 0.0024390243902439024
43 4/1763 28 12341 0.0022688598979013045
44 1/473 28 13244 0.0021141649048625792
45 16/7095 32 14190 0.0022551092318534178
46 8/3795 32 15180 0.0021080368906455862
47 32/16215 32 16215 0.0019734813444341658
48 17/8648 34 17296 0.0019657724329324698
49 17/9212 34 18424 0.0018454190186712982
50 17/9800 34 19600 0.0017346938775510203
51 2/1225 34 20825 0.0016326530612244897
52 1/650 34 22100 0.0015384615384615384
53 1/689 34 23426 0.0014513788098693759
54 1/689 36 24804 0.0014513788098693759
55 4/2915 36 26235 0.0013722126929674098
56 19/13860 38 27720 0.0013708513708513708
57 1/770 38 29260 0.0012987012987012987
58 1/812 38 30856 0.001231527093596059
59 2/1711 38 32509 0.0011689070718877849
60 11/8555 44 34220 0.0012857977790765633
61 22/17995 44 35990 0.0012225618227285356
62 11/9455 44 37820 0.0011634056054997355
63 46/39711 46 39711 0.0011583692175971393
64 23/20832 46 41664 0.0011040706605222733
65 23/21840 46 43680 0.0010531135531135531
66 5/4576 50 45760 0.0010926573426573426
67 10/9581 50 47905 0.001043732387015969
68 25/25058 50 50116 0.0009976853699417351
69 25/26197 50 52394 0.0009543077451616596
70 13/13685 52 54740 0.0009499451954694921
71 52/57155 52 57155 0.0009098066660834572
72 1/1065 56 59640 0.0009389671361502347
73 14/15549 56 62196 0.0009003794456235127
74 7/8103 56 64824 0.0008638775762063433
75 58/67525 58 67525 0.0008589411329137356
76 29/35150 58 70300 0.0008250355618776671
77 6/7315 60 73150 0.0008202323991797675
78 31/38038 62 76076 0.0008149744991850254
79 62/79079 62 79079 0.0007840261004817966
80 4/5135 64 82160 0.0007789678675754624
81 8/10665 64 85320 0.0007501172058134083
82 4/5535 64 88560 0.0007226738934056007
83 64/91881 64 91881 0.0006965531502704584
84 5/6806 70 95284 0.0007346459006758741
85 1/1411 70 98770 0.0007087172218284904
86 1/1462 70 102340 0.0006839945280437756
87 14/21199 70 105995 0.0006604085098353695
88 9/13717 72 109736 0.0006561201428883866
89 18/28391 72 113564 0.0006340037335775421
90 13/19580 78 117480 0.0006639427987742594
The unreduced form is included in case it might provide a hint as to solving the bonus portion.
|
Posted by Charlie
on 2013-11-27 16:45:02 |