DATA 2,5,8
DATA 22,55,888,201
DATA 232,88781,20
DATA 1,635,5,868,781,20,115
DATA 26,3,19,110,35,544,82,68,781,207
DATA 3, 14, 15, 926, 535
DIM s(6, 10)
FOR a = 1 TO 3: READ s(1, a): NEXT
FOR b = 1 TO 4: READ s(2, b): NEXT
FOR c = 1 TO 3: READ s(3, c): NEXT
FOR d = 1 TO 7: READ s(4, d): NEXT
FOR e = 1 TO 10: READ s(5, e): NEXT
FOR f = 1 TO 5: READ s(6, f): NEXT
KILL "sixsetsb.txt"
OPEN "sixsetsb.txt" FOR BINARY AS #1
FOR a = 1 TO 3
FOR b = 1 TO 4
t2 = s(1, a) + s(2, b)
FOR c = 1 TO 3
t3 = t2 + s(3, c)
FOR d = 1 TO 7
t4 = t3 + s(4, d)
FOR e = 1 TO 10
t5 = t4 + s(5, e)
FOR f = 1 TO 5
t6 = t5 + s(6, f)
n$ = " "
GET #1, t6, n$
v = ASC(n$) + 1
n$ = CHR$(v)
PUT #1, t6, n$
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
l = LOF(1)
OPEN "sixsets1.txt" FOR OUTPUT AS #2
OPEN "sixsets0.txt" FOR OUTPUT AS #3
DIM lastdigtot(9), lastdigct(9)
FOR psn = 1 TO l
lastdig = psn MOD 10
GET #1, psn, n$
v = ASC(n$)
IF v > 0 THEN
IF v > 1 THEN PRINT psn; v, : bigct = bigct + 1
lastdigtot(lastdig) = lastdigtot(lastdig) + v
lastdigct(lastdig) = lastdigct(lastdig) + 1
IF v > 1 AND lastdig = 1 THEN PRINT #2, psn; v
IF v > 1 AND lastdig = 0 THEN PRINT #3, psn; v
END IF
NEXT
PRINT : PRINT
CLOSE
FOR i = 0 TO 9
PRINT i, lastdigtot(i), lastdigct(i)
NEXT
PRINT bigct
finds the following list
ending total distinct
digit ways results
0 1260 455
1 1260 460
2 1260 457
3 1260 458
4 1260 449
5 1260 457
6 1260 456
7 1260 460
8 1260 459
9 1260 448
3085 possible totals have more than one way of occurring. This results in the curious fact that althogh there are different numbers of distinct results for most ending digits, the number of ways is equal, so that if a sampling from each set is taken at random, the probability of any given ending digit is the same.
Those totals that have more than one way of being produced and end in zero are:
total ways
70 3
90 3
100 4
110 3
120 4
130 4
140 2
150 2
160 2
170 3
180 5
200 3
210 3
230 3
250 2
260 3
270 4
280 7
290 4
300 5
310 8
320 5
330 5
340 5
350 6
360 3
370 3
380 5
390 3
400 3
410 3
420 4
440 4
450 2
460 4
470 4
480 5
490 4
500 3
510 3
540 3
560 2
570 2
590 3
610 3
620 2
640 3
650 3
670 2
680 2
700 4
720 5
730 3
750 3
790 3
800 4
810 4
820 3
830 4
840 6
850 4
860 5
870 6
880 6
890 2
900 4
910 5
920 2
930 4
940 8
950 5
960 6
970 6
980 8
990 5
1000 11
1010 8
1020 3
1030 8
1040 5
1050 3
1060 8
1070 2
1080 6
1090 6
1100 5
1110 9
1120 8
1130 3
1140 9
1150 4
1160 6
1170 10
1180 6
1190 3
1200 8
1210 5
1220 5
1230 5
1240 8
1250 6
1260 6
1270 8
1280 3
1290 5
1300 2
1320 3
1330 2
1340 7
1350 3
1360 2
1370 2
1380 3
1390 3
1400 5
1410 2
1420 3
1430 3
1440 3
1450 5
1470 3
1480 3
1500 3
1510 3
1530 2
1540 4
1550 3
1560 2
1570 3
1580 3
1590 3
1600 3
1610 3
1620 3
1630 5
1640 4
1660 7
1670 4
1680 3
1690 7
1700 6
1710 4
1720 5
1730 5
1740 3
1760 4
1770 5
1780 6
1790 7
1800 3
1810 7
1820 2
1840 3
1850 2
1860 8
1870 4
1880 3
1890 3
1900 3
1910 3
1920 4
1930 2
1940 4
1950 3
1960 2
1970 4
1980 2
2000 5
2020 2
2030 5
2040 2
2070 2
2090 4
2110 2
2120 2
2130 2
2150 2
2170 2
2180 3
2210 2
2230 3
2260 3
2290 2
2300 2
2340 2
2400 2
2480 2
2490 2
2520 2
2540 3
2600 2
2630 2
2710 2
2730 2
2780 3
2830 2
2870 2
3010 2
88830 2
88850 5
88860 4
88880 6
88890 2
88910 5
88930 2
88940 4
88960 3
88970 4
89010 3
89020 3
89030 4
89040 2
89050 4
89060 3
89070 3
89080 3
89120 3
89140 2
89210 2
89360 2
89370 3
89380 2
89390 2
89400 3
89460 2
89470 2
89480 3
89490 4
89510 2
89520 2
89540 2
89550 4
89570 4
89600 3
89610 2
89620 2
89630 4
89640 5
89660 8
89690 4
89700 4
89710 7
89720 4
89730 3
89740 3
89750 7
89760 3
89770 3
89780 4
89790 5
89800 7
89810 6
89820 3
89830 3
89840 3
89850 3
89890 2
89900 5
89910 2
89920 3
89930 2
89940 5
89950 2
89990 2
90000 2
90010 2
90040 2
90060 2
90140 2
90150 2
90160 2
90180 5
90220 2
90230 4
90240 3
90250 2
90260 2
90270 4
90320 2
90330 3
90340 2
90350 4
90390 2
90410 2
90420 3
90440 2
90460 2
90470 3
90480 2
90490 3
90540 2
90550 2
90560 2
90570 3
90580 6
90600 2
90620 2
90630 5
90640 2
90670 4
90680 2
90700 2
90720 2
90800 2
90850 2
90860 2
90870 2
91010 2
91100 3
and those ending in 1 (and having more than one way of being produced):
81 3
91 2
101 4
111 3
121 3
131 5
141 4
161 3
171 3
181 3
191 3
201 2
221 2
241 3
261 5
271 4
281 5
291 4
301 6
311 6
321 3
331 9
341 3
361 6
371 3
381 4
391 5
411 3
421 5
441 3
451 3
461 3
471 4
481 4
491 2
501 4
511 3
521 3
531 3
551 2
571 3
591 2
611 2
621 3
631 3
641 3
651 3
661 4
681 3
691 2
701 2
721 2
751 2
761 2
771 2
781 4
791 2
801 5
811 3
821 3
831 5
841 4
851 6
861 2
871 2
881 6
891 4
901 4
911 6
921 5
931 4
941 9
951 7
961 9
971 7
981 3
991 5
1001 9
1011 5
1021 6
1031 6
1041 6
1051 4
1061 7
1071 5
1081 7
1091 8
1101 2
1111 12
1121 4
1131 5
1141 6
1151 5
1161 9
1171 4
1181 4
1191 6
1201 9
1211 4
1221 6
1231 6
1241 8
1251 8
1261 6
1271 5
1281 3
1291 3
1301 4
1321 2
1331 2
1341 2
1351 5
1361 4
1371 4
1381 2
1391 5
1401 4
1411 2
1431 4
1441 2
1451 2
1461 5
1471 5
1481 6
1491 5
1511 4
1521 5
1531 2
1551 4
1561 2
1581 3
1591 3
1601 4
1611 3
1621 2
1631 8
1641 3
1661 3
1671 2
1681 4
1691 3
1701 4
1711 6
1721 5
1731 4
1741 3
1751 2
1761 2
1771 3
1781 3
1791 6
1801 5
1811 2
1821 4
1831 2
1841 3
1861 4
1871 3
1881 4
1891 4
1911 3
1921 3
1931 3
1941 5
1951 3
1961 2
1971 2
1981 2
1991 6
2001 4
2011 2
2021 3
2031 7
2051 5
2061 2
2071 2
2081 6
2091 3
2121 5
2131 2
2141 2
2151 3
2161 2
2171 2
2231 3
2251 3
2261 3
2301 3
2311 3
2321 2
2331 3
2341 2
2381 2
2461 2
2551 3
2571 2
2861 2
2911 2
88831 3
88851 3
88861 4
88871 3
88881 4
88891 4
88901 2
88911 2
88921 2
88931 3
88941 5
88961 3
88971 3
88991 3
89011 2
89021 3
89031 3
89041 6
89051 2
89071 4
89081 3
89101 2
89131 2
89181 2
89201 2
89371 3
89401 3
89431 2
89461 4
89481 5
89491 3
89511 3
89551 3
89561 4
89571 3
89591 2
89601 3
89611 2
89621 3
89631 2
89641 5
89651 2
89661 2
89671 4
89701 7
89711 5
89721 4
89731 5
89741 3
89751 2
89761 8
89771 4
89791 8
89801 4
89811 3
89821 4
89841 4
89851 2
89861 3
89871 3
89881 4
89891 2
89901 6
89911 2
89921 2
89931 2
89941 2
89961 2
89971 2
89981 2
90001 3
90011 2
90031 3
90121 2
90141 2
90181 3
90231 3
90241 3
90271 2
90301 2
90311 2
90321 2
90331 3
90341 2
90351 2
90361 3
90391 3
90421 6
90431 3
90451 2
90461 3
90471 3
90481 3
90501 2
90531 3
90541 2
90551 4
90561 2
90571 5
90621 3
90631 2
90641 2
90651 2
90661 3
90701 2
90711 2
90761 2
90871 2
90941 2
90991 2
91101 2
91241 2
91251 2
91491 2
Edited on February 18, 2014, 11:40 pm
|
Posted by Charlie
on 2014-02-17 13:08:09 |