Find the smallest prime which can be represented as sum of a prime and its reversal.
10 while Ct<44
20 P=nxtprm(P)
30 Ps=cutspc(str(P))
40 Rvs=""
50 for I=1 to len(Ps):Rvs=mid(Ps,I,1)+Rvs:next
60 Rv=val(Rvs)
70 P2=P+Rv
80 if prmdiv(P2)=P2 then print using(7,0),P,Rv,P2:Ct=Ct+1
90 wend
lists them, but not in order of total, so one must seek the smallest total, 383:
prime rev total
229 922 1151
239 932 1171
241 142 383
257 752 1009
269 962 1231
271 172 443
277 772 1049
281 182 463
439 934 1373
443 344 787
463 364 827
467 764 1231
479 974 1453
499 994 1493
613 316 929
641 146 787
653 356 1009
661 166 827
673 376 1049
677 776 1453
683 386 1069
691 196 887
811 118 929
823 328 1151
839 938 1777
863 368 1231
881 188 1069
20011 11002 31013
20029 92002 112031
20047 74002 94049
20051 15002 35053
20101 10102 30203
20161 16102 36263
20201 10202 30403
20249 94202 114451
20269 96202 116471
20347 74302 94649
20389 98302 118691
20399 99302 119701
20441 14402 34843
20477 77402 97879
20479 97402 117881
20507 70502 91009
20521 12502 33023
|
Posted by Charlie
on 2014-03-04 15:08:19 |