(In reply to
re: Method for solution... by Jer)
I guess this is the method that tomarken referred to:
Start with the identity for the sum of a GP..
1 + x + x2 + x3 + x4 + .. = 1/(1 – x)
Alternately, differentiate wrt x and multiply by x to regain the powers:
1 + 2x + 3x2 + 4x3 +.. = (1–x)-2
x + 2x2 + 3x3 + 4x4 +.. = x(1–x)-2
1 + 22x + 32x2 + 42x3 +.. = 2x(1–x)-3 + (1–x)-2
x + 22x2 + 32x3 + 42x4 +.. = 2x2(1–x)-3 + x(1–x)-2
1 + 23x + 33x2 + 43x3 +.. = 6x2(1–x)-4 + 4x(1–x)-3 + 2x(1–x)-3 + (1–x)-2
x + 23x2 + 33x3 + 43x4 +.. = 6x3(1-x)-4 + 6x2(1-x)-3 + x(1-x)-2
Now substituting x = 1/3 gives:
13/31 + 23/32 + 33/33 + 43/34 + ... = 33/8
|
Posted by Harry
on 2014-03-06 12:55:19 |