G(n) represents the sum of the digits of the ternary representation of n, where n is a positive integer randomly chosen from 1 (base ten) to 2014 (base ten) inclusively.
Determine the probability that G(n) ≥ 7.
DefDbl A-Z
Dim crlf$
Private Sub Form_Load()
ChDir "C:\Program Files (x86)\DevStudio\VB\projects\flooble"
Text1.Text = ""
crlf$ = Chr(13) + Chr(10)
Form1.Visible = True
DoEvents
For n = 1 To 2014
b3$ = base$(n, 3)
tot = 0
For i = 1 To Len(b3$)
tot = tot + Val(Mid(b3$, i, 1))
Next
If tot >= 7 Then gte7 = gte7 + 1
Next
Text1.Text = Text1.Text & gte7 & Str(gte7 / 2014) & crlf
Text1.Text = Text1.Text & crlf & " done"
End Sub
Function base$(n, b)
v$ = ""
n2 = n
Do
d = n2 Mod b
n2 = n2 \ b
v$ = Mid("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", d + 1, 1) + v$
Loop Until n2 = 0
base$ = v$
End Function
finds
1124 .558093346573982
meaning 1124 out of the 2014 numbers have G(n) >= 7 for a probability of approximately .558093346573982 or exactly 562/1007.
|
Posted by Charlie
on 2014-10-14 14:55:57 |