Given four consecutive Fibonacci numbers
a, b, c, and d.
Show that (ad,2bc,cd – ab) is a Pythagorean triplet.
c = a+b
d = b+c = a+2*b
triplet:
a*(a+2*b) , 2*b*(a+b) , (a+b)*(a+2*b) - a*b
a^2 + 2*a*b , 2*b^2 + 2*a*b , a^2 + 2*b^2 + 2*a*b
Square these:
a^4 + 4*a^3*b + 4*a^2*b^2
4*a^2*b^2 + 8*a*b^3 + 4*b^4
a^4 + 4*a^3*b + 8*a^2*b^2 + 8*a*b^3 + 4*b^4
The top two add to the third. QED
|
Posted by Charlie
on 2015-08-28 11:05:46 |