The outer two points (of the four end points) are found by
2x = x^2 + Ax + B
x^2 + (A-2)x + B = 0
The inner two points (defining the gap between the arcs) is given by
x = x^2 + Ax + B
x^2 + (A-1)x + B = 0
One arc extends from x = (2-A - sqrt((A-2)^2 - 4B)) / 2 to (1-A - sqrt((A-1)^2 - 4B)) / 2 and the other from (1-A + sqrt((A-1)^2 - 4B)) / 2 to (2-A + sqrt((A-2)^2 - 4B)) / 2
R = (2-A + sqrt((A-2)^2 - 4B)) / 2 - (1-A + sqrt((A-1)^2 - 4B)) / 2
L = (1-A - sqrt((A-1)^2 - 4B)) / 2 - (2-A - sqrt((A-2)^2 - 4B)) / 2
R - L = 2(2-A)/2 - 2(1-A)/2 = 2-A - (1-A) = 1
The answer should be 1.
|
Posted by Charlie
on 2016-05-23 15:29:15 |