All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Counting ARATs (Posted on 2016-09-07) Difficulty: 3 of 5
Let (a, b, c) denote a triplet of distinct integers in an ascending order.
If a2+ b2=c2+1
or if
a2+ b2=c2- 1
we will call such a triplet an ARAT (since it represents an almost-right-angle triangle) .
(4,8,9) is such a triplet.

How many ARATs are there, provided c<1,000,000?

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re: programming mistake; also need faster computer/programming language | Comment 2 of 4 |
(In reply to programming mistake; also need faster computer/programming language by Charlie)

The new version starts off by reporting the first 100 counted:


4 7 8     
4 8 9     *
8 9 12     
7 11 13     
6 17 18     
6 18 19     *
11 13 17     
10 15 18     
9 19 21     
14 17 22     
13 19 23     
17 21 27     
8 31 32     
16 23 28     
8 32 33     *
11 29 31     
15 26 30     
14 31 34     
20 25 32     
19 27 33     
18 30 35     *
17 34 38     
23 29 37     
22 31 38     
13 41 43     
16 41 44     
10 49 50     
26 33 42     
10 50 51     *
25 35 43     
19 43 47     
23 41 47     
31 34 46     
29 37 47     
28 39 48     
22 46 51     *
15 55 57     
34 38 51     *
32 41 52     
21 53 57     
25 49 55     
31 43 53     
24 55 60     
35 45 57     
34 47 58     
12 71 72     
12 72 73     *
20 65 68     
23 64 68     
31 56 64     
38 49 62     
17 71 73     
37 51 63     
26 65 70     
41 53 67     
40 55 68     
29 67 73     
33 64 72     
49 50 70     
22 79 82     
25 76 80     
44 57 72     
43 59 73     
28 76 81     *
41 64 76     
51 55 75     
19 89 91     
31 77 83     
47 61 77     
46 63 78     
39 71 81     
14 97 98     
14 98 99     *
44 68 81     *
34 79 86     
43 71 83     
50 65 82     
27 89 93     
49 67 83     
41 79 89     
53 69 87     
52 71 88     
36 89 96     
56 73 92     
21 109 111     
39 91 99     
55 75 93     
29 103 107     
32 100 105     *
47 86 98     
35 99 105     
59 77 97     
26 111 114     
58 79 98     
69 71 99     
65 76 100     
41 101 109     
16 127 128     
49 94 106     
62 81 102     

we'll see in a couple of hours, what the total number is.

  Posted by Charlie on 2016-09-07 10:41:16
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information