All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Prove Phi's Peculiar Property (Posted on 2016-10-17) Difficulty: 3 of 5
The golden ratio number φ = (1+√5)/2 possesses many interesting properties.

inter alia
For any even integer n: φn + 1 /φn is an integer
For any odd integer n: φn - 1 /φn is an integer

Prove the above.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re: A different approach (spoiler) Comment 3 of 3 |
(In reply to A different approach (spoiler) by Harry)

When submitting a problem you can use φ or Φ but you can't in the comment.  

Ady originally used phi in the problem but I switched it to φ.

In the previous sentence I copied and pasted from an instance of the Greek letter in the problem.  This sometimes results in anything else I type getting put in a grey highlight.

  Posted by Jer on 2016-10-19 12:57:58
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information