All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Delian delight (Posted on 2017-06-04) Difficulty: 3 of 5
Begin with unit equilateral triangle ABC.
Extend side AC one unit to D so DC=1.
Construct line AE such that
(1)E is on line DB with B between D and E,
(2)line AE intersects CB at F with B between C and F,
(3)and EF=1.

Find the length AE.

Comment on the title.

No Solution Yet Submitted by Jer    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution Comment 3 of 3 |

Let AE = d and BE = c.

From triangle ABE:

   AE^2 = AB^2 + BE^2

    d^2 = 1 + c^2                          (1)         

From triangle ABF:

        AF           AB
   ----------- = -----------
    sin(/ABF)     sin(/AFB)


     AE + EF          1
   ----------- = -----------
     sin(120)     sin(/BFE)

      d + 1           1
   ----------- = -----------   
    sqrt(3)/2     sin(/BFE)

   (d+1)^2*sin(/BFE)^2 = 3/4        (2)

From triangle BEF:

        BE            EF
   ----------- = -----------
    sin(/BFE)     sin(/EBF)

        c             1
   ----------- = -----------
    sin(/BFE)      sin(30)

   c = 2*sin(/BFE)                          (3)

Combining (1), (2), and (3) gives

   d^3 = 2

      or

   d = 2^(1/3) the Delian constant.

The figure cannot be constructed
with straightedge and compass or
surely the ancient Greek geometers
would have solved the doubling of
the cube, also known as the Delian 
problem.
  




  Posted by Bractals on 2017-06-05 18:13:40
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information