All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Unpainting Black (Posted on 2017-07-14) Difficulty: 4 of 5
Like in Paint it Black, twenty-seven identical white cubes are assembled into a single cube; then the outside of that cube is painted black.

The cube is then disassembled and rebuilt randomly.

What is the probability that the outside of this cube is now completely white?

No Solution Yet Submitted by Brian Smith    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts proposed computer solution | Comment 3 of 5 |
Initially I thought this was an impossible task. If placing cubelets one by one there are 27!/(8!*12!*6!) =  783,055,973,700 distinct orders in which types of cubelets could be arranged. Even dividing by the 6*4 = 24 ways that a single arrangement of cubes shows up in the counting, leaves more than 32,627,332,237.5 ways; the fraction resulting from some of the arrangements being symmetrical so as not to have 24 ways of showing up. That's a lot of calculation.

You can't just calculate the corner pieces, side pieces and face pieces (classified by their new positions) separately and multiply them together, as the probabilities are not independent, with the probability of the edge pieces being all-white-showing depends on the number of pieces of various types (from original position) remaining in the mix.

Then I realized the way around this problem is to keep a matrix of how many of each type remains at each stage and multiply the specific instances to calculate the next generation of the matrix (a 9x13x7x2 array, with the highest subscripts being the 8, 12, 6 and 1 vertex, edge, face and center pieces respectively and all having the possibility of a zero subscript for zero of that type remaining).

The binary distribution is used to find the likelihood of a given combination of V, E, F and C pieces at a given time. It needs be multiplied by the likelihood of having a given set available at any time (with the requisite feature of not having a black square showing up previously). And of course the probability that a given type in a given position will result in a success.

That latter probability is kept in a matrix of its own:

   new                  type (original position)
placement    vertex     edge      face      center
    V          1/8      3/12       1/2         1
    E          3/12     5/12       2/3         1
    F          1/2      2/3        5/6         1
    C           1        1          1          1

The program below reports:

phase 1
phase 2
1.20158738370485E-06
phase 3
2.15921476422768E-15
final tally 
4.92046901590714E-18  = 1/2.03232658668747E+17

The 1.20158738370485E-06 indicates that after phase 1, the assignment of vertex pieces, the overall probability of success is about 1.2016 x 10^-6.

Likewise after that the probability that success continues through phase 2 is about 2.1592 x 10^-15.

The overall probability of going without any black squares showing up on the outside is about 4.9205 x 10^-18, or 1 in 2.0323 x 10^17, or 1 in 203,232,658,668,747,000 (remember, that's about; the three zeros at the end are not part of the significant figures).

There are a lot of places for possible error here: first in the theory, second in the calculation of the above probabilities, but thirdly in the programming. I put in debugging statements (wherever you see xx=xx was a point for pausing the program to look for something wrong), and went over the listing to look for places where, say, I didn't change a 19 to a 7 in the section I copied code from the edge portion to the face portion. So other sets of eyes would be helpful.



DefDbl A-Z
Dim crlf$, prob(3, 3)


Private Sub Form_Load()
 Form1.Visible = True
 
 
 Text1.Text = ""
 crlf = Chr$(13) + Chr$(10)
 
 ' prob(a,b) is that of all-white showing at position a
 ' when taking a piece from the original at position b
 ' where positions are:
 ' 0 = corner (vertex)
 ' 1 = edge
 ' 2 = face center
 ' 3 = cube center
 
 prob(0, 0) = 1 / 8: prob(0, 1) = 3 / 12: prob(0, 2) = 1 / 2: prob(0, 3) = 1
 prob(1, 0) = 3 / 12: prob(1, 1) = 5 / 12: prob(1, 2) = 2 / 3: prob(1, 3) = 1
 prob(2, 0) = 1 / 2: prob(2, 1) = 2 / 3: prob(2, 2) = 5 / 6: prob(2, 3) = 1
 prob(3, 0) = 1: prob(3, 1) = 1: prob(3, 2) = 1: prob(3, 3) = 1
 
 ' phase 1: transition to states after selection of four corners
 Text1.Text = Text1.Text & "phase 1" & crlf
 ReDim newState(8, 12, 6, 1)
 
 For vPieces = 0 To 8
   remain = 8 - vPieces
   For ePieces = 0 To remain
     remain = remain - ePieces
     For fPieces = 0 To remain
       If fPieces <= 6 Then
         remain = remain - fPieces
         cPieces = remain
         If cPieces <= 1 And cPieces >= 0 Then
           p = prob(0, 0) ^ vPieces * prob(0, 1) ^ ePieces * prob(0, 2) ^ fPieces
           newV = 8 - vPieces
           newE = 12 - ePieces
           newF = 6 - fPieces
           newC = 1 - cPieces
           p = p * binom(vPieces, 8, 27) * binom(ePieces, 12, 27 - vPieces) * binom(fPieces, 6, 27 - ePieces - vPieces)
           If newV + newE + newF + newC <> 19 Then
             xx = xx
           End If
           newState(newV, newE, newF, newC) = newState(newV, newE, newF, newC) + p
         End If
         remain = remain + fPieces
       End If
     Next fPieces
     remain = remain + ePieces
   Next ePieces
   remain = remain + vPieces
 Next vPieces
 
 ' phase 2 choose edge pieces for each possible availability
 ' of numbers of pieces
 Text1.Text = Text1.Text & "phase 2" & crlf
 
 ReDim oldState(8, 12, 6, 1)
 For a = 0 To 8
 For b = 0 To 12
 For c = 0 To 6
 For d = 0 To 1
   oldState(a, b, c, d) = newState(a, b, c, d)
   If newState(a, b, c, d) > 0 And a + b + c + d <> 19 Then
      xx = xx
   End If
   tot1 = tot1 + newState(a, b, c, d)
 Next
 Next
 Next
 Next
 Text1.Text = Text1.Text & tot1 & crlf
 
 ReDim newState(8, 12, 6, 1)
 
 For a = 0 To 8
 For b = 0 To 12
 For c = 0 To 6
 For d = 0 To 1
   If a + b + c + d = 19 Then
   
 For vPieces = 0 To 12
  If vPieces <= a Then
   remain = 12 - vPieces
   For ePieces = 0 To remain
    If ePieces <= b Then
     remain = remain - ePieces
     For fPieces = 0 To remain
       If fPieces <= c Then
         remain = remain - fPieces
         cPieces = remain
         If cPieces <= d And cPieces >= 0 Then
           p = prob(1, 0) ^ vPieces * prob(1, 1) ^ ePieces * prob(1, 2) ^ fPieces
           newV = a - vPieces
           newE = b - ePieces
           newF = c - fPieces
           newC = d - cPieces
           p = p * binom(vPieces, a, 19) * binom(ePieces, b, 19 - vPieces) * binom(fPieces, c, 19 - ePieces - vPieces)
           p = p * oldState(a, b, c, d)
           If newV + newE + newF + newC <> 7 Then
             xx = xx
           End If
           newState(newV, newE, newF, newC) = newState(newV, newE, newF, newC) + p
         End If
         remain = remain + fPieces
       End If
     Next fPieces
     remain = remain + ePieces
    End If
   Next ePieces
   remain = remain + vPieces
  End If
 Next vPieces
        
   End If
 Next
 Next
 Next
 Next
 
 
 
 ' phase 3 choose face pieces for each possible availability
 ' of numbers of pieces
 Text1.Text = Text1.Text & "phase 3" & crlf
 
 ReDim oldState(8, 12, 6, 1)
 For a = 0 To 8
 For b = 0 To 12
 For c = 0 To 6
 For d = 0 To 1
   oldState(a, b, c, d) = newState(a, b, c, d)
   If newState(a, b, c, d) > 0 And a + b + c + d <> 7 Then
      xx = xx
   End If
   tot2 = tot2 + newState(a, b, c, d)
 Next
 Next
 Next
 Next
 Text1.Text = Text1.Text & tot2 & crlf
 
 ReDim newState(8, 12, 6, 1)
 
 For a = 0 To 8
 For b = 0 To 12
 For c = 0 To 6
 For d = 0 To 1
   If a + b + c + d = 7 Then
   
 For vPieces = 0 To 6
  If vPieces <= a Then
   remain = 6 - vPieces
   For ePieces = 0 To remain
    If ePieces <= b Then
     remain = remain - ePieces
     For fPieces = 0 To remain
       If fPieces <= c Then
         remain = remain - fPieces
         cPieces = remain
         If cPieces <= d And cPieces >= 0 Then
           p = prob(2, 0) ^ vPieces * prob(2, 1) ^ ePieces * prob(2, 2) ^ fPieces
           newV = a - vPieces
           newE = b - ePieces
           newF = c - fPieces
           newC = d - cPieces
           p = p * binom(vPieces, a, 7) * binom(ePieces, b, 7 - vPieces) * binom(fPieces, c, 7 - ePieces - vPieces)
           p = p * oldState(a, b, c, d)
           If newV + newE + newF + newC <> 1 Then
             xx = xx
           End If
           newState(newV, newE, newF, newC) = newState(newV, newE, newF, newC) + p
         End If
         remain = remain + fPieces
       End If
     Next fPieces
     remain = remain + ePieces
    End If
   Next ePieces
   remain = remain + vPieces
  End If
 Next vPieces
        
   End If
 Next
 Next
 Next
 Next
 
 'final tally
 Text1.Text = Text1.Text & "final tally " & crlf
 
 
 For a = 0 To 8
 For b = 0 To 12
 For c = 0 To 6
 For d = 0 To 1
   If newState(a, b, c, d) > 0 And a + b + c + d <> 1 Then
      xx = xx
   End If
   
   tot3 = tot3 + newState(a, b, c, d)
 Next
 Next
 Next
 Next
 Text1.Text = Text1.Text & tot3 & "  = 1/" & 1 / tot3 & crlf

 
 
 
 
 Text1.Text = Text1.Text & crlf & " done"
  
End Sub

Function binom(a, b, c)
 p = 1
 For i = 0 To a - 1
   p = p * (b - i) / (c - i)
 Next
 binom = p
End Function


  Posted by Charlie on 2017-07-14 17:05:24
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information