All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Algorithms
Unique decimal primes (Posted on 2017-11-24) Difficulty: 4 of 5
A prime such that its decimal period's length is shared with no other prime is called a unique prime (as defined by Yates in 1980). 3, 11, 37, and 101 are unique primes, since they are the only primes with periods one ( 1/3=.3333), two (1/11=.090909... ), three and four respectively.

List the first 15 unique primes, explaining how you obtained them.

Copying a list from OEIS does not qualify as a solution, getting information from any source is encouraged.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts computer exploration Comment 1 of 1
The program lists the unique primes in the order of the length of period, rather than by magnitude of the number.  It factors a number consisting of n 9's into primes and tests the cycle lengths of their reciprocals. Any that match the sought length are counted, and if the count is exactly one, that prime is listed for that cycle length. 


   10   point 80
   20   open "uniqprim.txt" for output as #2
   30   for Lngth=1 to 30
   40     Nines=10*Nines+9
   50     N=Nines:Lct=0:Goodfct=0:Fct=0
   60     while N>1
   65       Pfct=Fct
   70       Fct=prmdiv(N)
   80       if Fct=0 then
   90        :if fnPrime(N) then
  100         :Fct=N
  110       if Fct>0 then
  120         :N=N\Fct
  130         :Tst$=str(1/Fct)
  140         :Ix=instr(Tst$,".")
  150         :Tst$=mid(Tst$,Ix+1,*)
  160         :for Trlen=1 to Lngth
  162          :Hit=1
  163          :Maxoffset=(Lngth+7)*Trlen
  164          :if Maxoffset>300 then Maxoffset=300:endif
  167          :for Offset=0 to Maxoffset step Trlen
  170           :if mid(Tst$,Offset+1,Trlen)<>mid(Tst$,Trlen+Offset+1,Trlen) then
  175              :Hit=0
  190           :endif
  191          :next Offset
  192          :if Hit=1 and Fct<>Pfct then
  195              :cancel for:Goodfct=Fct:goto 220
  196          :endif
  200         :next Trlen
  220         :if Trlen=Lngth then inc Lct:endif
  230       :else
  240         :N=0
  250     wend
  260     if N>0 then
  270       :if Lct=1 then
  280         :print Lngth,Goodfct
  281         :print #2,Lngth,Goodfct
  290       :endif
  300     :else
  310       :print Lngth,"too big"
  311       :print #2,Lngth,"too big"
  320      
  330   next Lngth
  340  
  350  
  999   close #2
 9998   end
 9999   '
10000   fnOddfact(N)
10010   local K=0,P
10030   while N@2=0
10040     N=N\2
10050     K=K+1
10060   wend
10070   P=pack(N,K)
10080   return(P)
10090   '
10100   fnPrime(N)
10110   local I,X,J,Y,Q,K,T,Ans
10120   if N@2=0 then Ans=0:goto *EndPrime
10125   O=fnOddfact(N-1)
10130   Q=member(O,1)
10140   K=member(O,2)
10150   I=0
10160   repeat
10170     repeat
10180       X=fnLrand(N)
10190     until X>1
10200     J=0
10210     Y=modpow(X,Q,N)
10220     loop
10230       if or{and{J=0,Y=1},Y=N-1} then goto *ProbPrime
10240       if and{J>0,Y=1} then goto *NotPrime
10250       J=J+1
10260       if J=K then goto *NotPrime
10270       Y=(Y*Y)@N
10280     endloop
10290    *ProbPrime
10300     I=I+1
10310   until I>50
10320   Ans=1
10330   goto *EndPrime
10340   *NotPrime
10350   Ans=0
10360   *EndPrime
10370   return(Ans)
10380   '
10400   fnLrand(N)
10410   local R
10415   N=int(N)
10420   R=(int(rnd*10^(alen(N)+2)))@N
10430   return(R)
10440   '
10500   fnNxprime(X)
10510   if X@2=0 then X=X+1
10520   while fnPrime(X)=0
10530     X=X+2
10540   wend
10550   return(X)
10560   '

Only 11 were successfully found, for cycle lengths 1, 2, 3, 4, 9, 10, 12, 14, 19, 23 and 24. For cycle length 17 and lengths above 25, the program cannot say if the given length has such a prime, as at some point when factoring the number 999...9, a composite number was found where its smallest prime factor was too large for the UBASIC prmdiv() function.

length  prime
 1      3 
 2      11 
 3      37 
 4      101 
 9      333667 
 10      9091 
 12      9901 
 14      909091 
 17     too big
 19      1111111111111111111 
 23      11111111111111111111111 
 24      99990001 
 26     too big
 27     too big
 28     too big

The length column corresponds to A007498 in the OEIS, and the prime column corresponds to A007615. I'm assuming that what was asked for was the first 15 items from A040017, which is ordered by the size of the prime rather than the length of the cycle.

  Posted by Charlie on 2017-11-24 14:22:49
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information